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Preface

This follow-on study investigates specific aspects of

F-16 air base simulation modeling and analysis originally

discussed in the much broader research of Dr. David A.

Diener, Major, USAF. As the initial research increment to

be improved upon by future researchers, this study (1)

provides a preliminary assessment of the relative accuracy

of conservatively specified neural network metamodels in

predicting sortie generations for pre-specified F-16 air

base resource level postures, and (2) presents a possible

research methodology for future investigations.

Backpropagation neural networks (single hidden layer)

and regression equations are fitted to daily cross-sections

of simulated data representing the first six days of thirty

day (longitudinal) time series data previously generated via

simulation by Diener. Two scenarios are modeled, Attack and

No-Attack, yielding a total of six network metamodels and

six associated regression metamodels (used as a baseline for

predictive accuracy) per scenario. An independent test

sample not used for metamodel fitting is generated for each

day, and the predictive accuracy of each daily metamodel is

evaluated. For this study, the conclusion is negative:

regression metamodels are found superior in predicting

unseen cases comprising the independent test samples, in

comparison with their neural network counterparts.
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Given the severity of the experimental constraints, the

fact that all samples represent independent variables as

dichotomous values, the relatively small size of the sample

(from the perspective of neural network training require-

ments), and the robust nature of traditional regression

modeling, network results are promising. The networks

exhibit rather remarkable memorization (goodness-of-fit)

characteristics in spite of their seeming inability to

accurately generalize (predict) well for unseen cases. It

is suggested that the lack of generalization exhibited by

the networks developed in this study can be remedied (for

Attack Scenario days in particular) via modifying network

architectures to account for blocking, increasing training

set (sample) sizes, and/or employing a hybrid net for

modeling (such as Kohonen-Backpropagation).

This work owes its genesis to the efforts of several

individuals providing support and assistance at precisely

the right moments throughout the research process. First, I

wish to thank David A. Diener, Major, USAF, who virtually

transformed my dream of exploring neural network techniques

into concrete reality. His talents in simulation, modeling,

and statistical analysis are surpassed only by his

tolerance, patience, kindness, and a remarkably steadfast

sense of purpose. Second, I owe very deep gratitude to

Jerry Galligher of California Scientific Software, whose

willingness and ability to answer any question I had about
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network theory and applications speaks as much for his

humanity as for his intellectual capabilities. Third,

thanks is owed to Jacob Simons, Major, USAF, for patiently

and consistently reminding me that the entire point of

research such as mine is ultimately to assist people in

making difficult decisions about real-world problems.

Fourth, I wish to thank Dr. Ken Melendez, Deputy Director of

the Center for Artificial Intelligence Applications (CAIA),

for advice and recommendations that proved to be critical

during the beginning stages of this research. Fifth, a word

of thanks is also owed to Dr. P. George Benson (Curtis L.

Carlson School of Management, University of Minnesota),

Dr. Shane, Dr. Barr, and Dr. Donna Herge, Lt Col, USAF, all

AFIT faculty members, for guidance regarding appropriate

statistical analysis and research methodology techniques.

Finally, I wish to express deep gratitude to my family--to

my wife Mary, for the understanding, concern, and

inspiration she so selflessly gave me throughout the course

of this work, and to Pierrette and Jim, for being wise far

beyond their years in somehow understanding why their father

was always so very busy.
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Abstract

This exploratory study assesses the accuracy of

backpropagation neural networks in predicting sortie genera-

tions, given pre-specified levels of air base resources.

Single hidden layer networks and two-way interaction regres-

sion metamodels were fitted to simulated data previously

generated by way of a fractional factorial design for ten

factors at two levels, and subsequently tested (cross-

validated) via an independent testing sample. It was deter-

mined that regression metamodels were generally superior in

predicting unseen cases, while their network counterparts

exhibited far better goodness-of-fit characteristics.

The research consistently emphasizes that goodness-of-

fit in no way necessarily implies goodness-of-prediction, in

that different non-equivalent statistical measures are

required to assess both these phenomena.

In spite of their relatively poor performance in

predicting the test sample used in this study, experimental

results indicate that future research focused on applying

neural network modeling techniques to sortie generation

prediction and the identification of critical air base

resources is warranted. uggestions for more effective

neuronal modeling include ar itectural experimentation,

increasing sample sizes employe for network training, and

representing the research problem i terms of a time series.
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AN EXPLORATORY APPLICATION OF NEURAL NETWORKS TO

THE SORTIE GENERATION FORECASTING PROBLEM

I. Introduction

1.1 Air Base Operability (ABO) System Performance

1.1.1 Resource Management. As identified by Tidal

McCoy, former Assistant Secretary of the Air Force, ABO

consists of four primary functions: defense, survival,

recovery, and continuing to fly aircraft (1987:52-56).

Insightful resource management is central to this paradigm

in that operational effectiveness depends upon continuing

logistics infrastructure health. Understanding the

relationship between resource allocation decisions and ABO

performance is therefore critical for managers attempting to

optimally distribute scarce financial and physical resources

among Air Base functional elements.

Choosing from the array of resource allocation alterna-

tives requires the perspective of what is most beneficial

(optimal) for overall ABO system performance. Managers must

perform this selection within a highly dynamic environment

characterized by numerous mission goals, resource shortages,

time constraints, hostile encounters, and other

complexities. The emerging requirement is thus effective

systems-level resource management, with a corequisite need

for support systems and analysis tools that foster informed

1



decision making within a highly dynamic decision

environment.

1.1.2 Large-Scale ABO Systems Modeling. The RAND

Corporation has developed several analytic and simulation

models of combat support systems for the research of complex

system interactions. One simulation model set, the Theater

Simulation of Air Base Resources (TSAR) and its companion

model, TSAR Inputs using AIDA (TSARINA), provides a powerful

means for evaluating alternative systems-level resource

policy scenarios for several Air Base system configurations.

This simulation provides data necessary for analyzing ABO

system performance by generating-sorties flown and other

operational measures amenable to statistical analysis and

interpretation (Rich et al., 1987).

ABO modeling and analysis are foundational for

accurately assessing readiness and sustainability, for

examining the support performance characteristics of an

existing logistics infrastructure (the ABO support system),

and for (ultimately) providing resource managers with the

information required to optimally allocate resources to Air

Base functional elements. While several other models are

available to ABO researchers, this research discusses only

the TSAR/TSARINA model set and the data it provides for

analysis.

1.1.3 Definitions. Given a requirement for a systems-

level approach for ABO analysis, a clear understanding of

2



the terms sortie generation, resources, and sorties

generated (or sorties flown) is required. In this research,

sortie generation is the process by which aircraft are made

ready to fly. The inputs to this process are the existing

resources an air base possesses, while the outputs of this

process are the resulting number of aircraft flights--sortie

generations or sorties flown. A sortie is to be understood

as one aircraft flight. The number of sorties flown are

often characterized temporally, (as the number of flights

occurring within a given time interval), in order to provide

a basis for comparison (for example, the number of flights

occurring within a day, tabulated for 30 days). For this

research, the terms sorties generated and sorties flown are

considered equivalent (both denote the number of flights

occurring within a specified time interval); both are used

interchangeably throughout this research.

The relationship between r -ces and sortie genera-

tions (or sorties flown), denu 1ed by sortie generation, is

exceedingly complex and dynamic in nature. Diener

researches this process, illustrated in his study and

duplicated here as Figure 1.1, in terms of a mathematical

(functional) relationship (1989:12). Resources are

characterized as independent variables and sorties flown as

the response. Note that the sortie generation process is

conceived as dynamic in that changes in resource levels

(resource level dynamics) are assumed to produce significant

3



differences in the numbers of sorties flown, and also

because the interaction of resources is assumed to be highly

significant (Diener, 1989:11-15). These dynamics are

further increased when the impacts of air base attacks on

resource levels are considered. The process, inputs, and

outputs are collectively represented in Diener and

duplicated here as a companion to Figure 1.1, in Figure 1.2

(1989:13).

ABDR - Aflrat Battle Deage m it
AMS - Avionics Intermediate Shop.
RRtR. Rapid Runway Rtepair a.SE -Support Equipment

Figure 1.1. Sortie Generation Process (Diener, 1989:12)
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Finally the term scenario, as used in this study,

,lenotes an ABO environmental variable that may assume one of

two possible values--attack or no-attack. In the case of

attack, air base resources are potentially lost or

destroyed. No continuum of range is considered with respect

to the value of the variable attack.

Albase Sytem

/

+ I Lpstle ea~nstA®,

Sparta AicraftbLA

+e m(usumed)

Figure 1.2. Sortie Generation Dynamics (Diener, 1989:13)

1. 1.4 ABO Analysis Approach. Interpreting the McCoy

paradigm referenced above in operational terms, the investi-

gation of the relationship between resource dynamics and

sorties flown is a logical modeling candidate and starting
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point for analyzing the impacts of resource alternatives on

ABO system performance (Diener, 1989:1-4). While the

TSAR/TSARINA simulation model provides necessary data, a

well-defined analysis methodology and logical interpretation

paradigm for analysis results are obviously required. In

the following discussion of the general problem for this

study--the modeling and analysis of the relationship between

sortie generations and resource dynamics--both the system

definition (one F-15 Air Base) and general approach to

analysis previously employed by Diener are noted and adopted

(1989). The conception of the relationship between

resources and sortie generations as a function is considered

fundamental.

1.2 General Research Problem and Goal

1.2.1 Previous Study. In 1989, Diener employed a

systems-level modeling perspective for analyzing several ABO

research issues (1989). Two elements of the stated research

objectives were predicting daily sortie generations and

identifying critical resource changes and interactions

occurring throughout a one month simulation analysis horizon

(1989:5). All ABO resource, environmental, and policy

variables were conceptualized as a set of mutually

interrelated and co-dependent elements that generally

defined the air base logistics infrastructure--whose system

performance was measured in terms of sortie generations.
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An important development in this study was the use of

regression models for both predicting sortie generations and

analyzing resource dynamics (1989:6-9). Through modeling an

F-15 Air Base first as a system via large-scale simulation

(TSAR/TSARINA), regression equations were subsequently

derived from generated data as more general analytic meta-

models of the simulation model itself. Analyses and

interpretations of resource level main effects and secondary

interactions were performed via these metamodels, -or the

purpose of evaluating the behavior of resource dynamics

occurring throughout the one month simulation horizon.

Sortie generation prediction and resource level

dynamics analyses were accomplished for various resource

policy scenarios in both the attack and no-attack scenarios.

The analytic metamodels were then offered as an economical

alternative to large-scale simulation, and, further, as a

methodology ultimately intended to assist resource managers

in assessing the impact of policy or resource allocation

alternatives on ABO system readiness and sustainability

support characteristics.

1.2.2 Present Study Research Problem and Goal. Thus,

the analytical modeling and analysis of ABO system sortie

generation and resource interaction dynamics provide the

general research domain of this follow-on study. The

overall goal of this research is to derive, if possible,

more accurate analytical metamodels for predicting sortie

7



generations and interpreting resource dynamics than those

previously developed using linear techniques. This is

attempted via the use of a specific non-linear modeling

technique, with emphasis placed on the potential value of an

analytic alternative to the time and cost intensive

technique of large-scale simulation. Prior to discussing

the specifics of this technique and the approach to the

problem, the general issues of the present research

environment, largely inherited from the progenitor study

referenced above, are presented next.

1.3 Research Issues Inherited from Diener

Diener conducted the TSAR ABO simulation as a

controlled statistical experiment, utilizing a fractional

factorial experimental design for treatment selection and

application (1989). Through the use of this design together

with the employment of a common random number (CRN) variance

reduction technique (VRT), the resolution of essential

factor treatment/response data was maximized throughout the

attempt to reduce the impact of simulation model variance on

experimental results. Metamodel parameter estimates were

subsequently developed using the data sample generated by

the simulation. Finally, the derived metamodels were used

for measuring treatment (resource level combination) effects

on the system response variable (sorties flown), and for

interpreting resource dynamics (main effects and secnnd

order interactions). With respect to the metamodels, the

8



four key issues requiring examination are model linearity,

variance, response correlation, and prediction versus fit.

1.3.1 Linearity. Throughout Diener's study, it was

assumed that the relationship between daily sorties flown

and resource levels was linear, and that higher order inter-

action terms were negligible (an assumption often made by

researchers using two-level factorial designs for

exploratory data analysis) (Diener, 1989:42; McLean and

Anderson, 1984:1). Neither assumption may be entirely

without difficulty (Meyers, 1986:167-168; Diener, 1989:221).

While the experimental design employed was sufficient for

preventing the occurrence of confounding between main

effects and secondary interactions within the statistical

experiment, it in no way conclusively demonstrates or

provides guarantees for the assumed linear relationship.

Assuming linearity requires the researcher to make

assumptions about the random error term population distri-

bution, its mean value, the constancy of its variance, and

the independence of the random errors themselves (McClave

and Benson, 1988:500-503,557-558). If the assumptions of

linearity do not obtain (are not evident in the data), both

forecasting accuracy and resource analysis results may be

potentially compromised. Non-linear models may be more

appropriate and may provide more accurate predictions than

their linear counterparts, particularly when assumptions of

9



linearity are violated--when a linear relationship is not

truly present (Meyers, 1984:300-302,312-316).

1.3.2 Variance. In regard to unexplained variance,

Diener states:

The air base logistics infrastructure as modeled here
still coptains much unexplained variance as evidenced
by the R results. The average R for the attack case
is 0.6366 while the no-attack case averages 0.6789.
Either the problem has a high degree of inherent
variability, some other important factors are omitted,
or some higher-interaction terms are not negligible.
(1989:221)

Although much effort was made to diminish the effects of

simulation model variance by employing a CRN technique based

on common random number stream starting points (seeds)

across design points (runs), a large degree of variance

remains unexplained. Another issue, then, entails

identifying both the sources of this variance and their

respective contributions. At a more general level, a method

of effectively dealing with the impact of variance on

prediction accuracy and resource dynamics interpretation are

the primary concerns.

1.3.3 Correlation. Each run of the simulation model

encompasses a thirty day span, where the treatment specified

represents the state of the world as of Day 1:

Thus we are dealing with indicator variables
representing logistics policies, repair capabilities,
expected delivery schedules, and resource levels as of
Day 1, rather than trackable quantitative series for
the independent variables. (Diener, 1989:15)

The issue here involves correlated responses (daily sorties

flown) within the time series of 30 daily sorties flown

10



measures generated by each run (Diener, 1989:14-15,46).

While the impact of correlation is mitigated by cross-

sectional metamodel derivation across runs (one metamodel is

developed for each day--across treatments), potential

problems of autocorrelation, nonstationarity, and series

interruptions (resulting from the shocks of TSARINA attack

simulations) may arise when evaluating the response (sorties

flown) time series generated within a run (Diener, 1989:14-

15). The effects of (temporal) correlation on the

experimental results constitutes the third research

environment issue inherited by this study.

1.3.4 Model Fit versus Predictive Accuracy. Research

suggests that the comparison of R2 values and backward step-

wise elimination methodologies (based on a significance

level comparisons) often used for linear model selection

(Meyers, 1986:55,219) may not yield the best candidates for

use in prediction, but are rather more appropriate for

assessing the best overall model fit (Meyers, 1986:100-111).

Thus, a well-defined distinction between model fit and

predictive accuracy is required.

In his discussion of criteria for model selection,

Meyers notes the following regarding the coefficient of

determination, R 2, of a model:

As we indicated earlier, R2 is surely a measure of the
model's capability to fit the present data. ... Thoygh
there are rules and algorithms (strictly based on R )
that allow for selection of best model, the statistic
itself is not conceptually prediction oriented (i.e.,
prediction performance based); thus it is not recom-

11



mended as a sole criteria for choosing the best predic-

tion model from a set of candidates. (1986:102)

Further, with respect to the analysis of residuals, he

notes: "These residuals are measures of the quality of fit

and do not assess the quality of future predictions" (1986

:103). The point is that in model selection, one must not

only take into account the fit of a model to the present

data, but must also contend with the issue of predictive

accuracy--a related, though distinct, issue.

Note that this does not suggest that models exhibiting

large R2 values are inappropriate--such models, judiciously

selected via this and other diagnostic measures, are funda-

mental to data analysis in regard to understanding the

system under consideration. What is suggested is that a

true difference between understanding (with respect to

fitting) a system and predicting future values of same does

in fact exist, and that both issues must be considered by

the researcher during the model selection process. This

difference constitutes the final consideration necessary for

assessing the metamodels previously developed by Diener

(1989).

1.4 Specific Research Problem and Approach

An empirical investigation is conducted to determine

whether a certain class of non-linear models will yield

consistently more accurate sortie forecasts than is possible

using the traditional approach employed by Diener (1989).

12



Assuming the simulation output data represent real-world

conditions, twelve feedforward backpropagation neural

networks are developed (with software) to model each of the

first six (of thirty) days of the air base attack and non-

attack scenarios (the first six days of the attack scenario

have proven to be the "messiest" time period in the model

and are intentionally chosen for analysis).

The feedforward/backpropagation network model

combination has been specifically selected for testing for

several reasons, including its ability to model arbitrarily

complex decision surfaces effectively, its freedom from

dependency on linear superposition and orthogonal functions,

its theoretical ability to model any mathematical function,

and its widespread use in applications (Hecht-Nielsen,

1990:94, 108; Hecht-Nielsen, 1988:120-121; Lippman, 1987:50;

Wasserman, 1989:43-60). Neural networks provide a new tech-

nique for exploring alternative approaches in ABO modeling

research.

1.5 Research Obiectives

The research objectives germane to this follow-on study

focus specifically on the application of neuronal modeling

to the sortie forecasting problem and the interpretation of

resource level dynamics. The study is organized in terms of

the following objectives:

1. Feedforward backpropagation neural networks are

trained and tested to determine whether they can provide

13



better predictions of sorties flown (for a specified set of

days) than linear regression equations. All models are

developed (fitted) from the sample data previously generated

and analyzed in Diener (1989).

2. All neural network and regression equation

metamodels are tested on an independent sample not used in

model fitting, to specifically determine how well each

method predicts the simulated response variable (sorties

flown). The decision to model the "difficult" days from

Diener's study (the first six of both scenarios) is based on

the desire to assess predictive accuracy. An associated

issue with regard to this objective lies in clearly

distinguishing predictive capability from goodness-of-fit,

and assessing, to the extent possible, how they are or are

not related.

3. An interpretation of the neural network model

performance will be provided, stated in terms of specific

formal and/or logical properties. In addition, the

inherited research issues of linearity, correlation, and

variance are addressed in this context.

1.6 Limitation of Scope

The wealth of available ABO modeling and analysis

literature is clearly indicative of its breadth, complexity,

and diversity. In the interests of analytical clarity and

focus, this research is strictly limited to developing and

analyzing twelve feedforward neural network models, (using

14



supervised learning and the backpropagation training rule),

which r-el each of the first six days of the attack and no-

attack scenarios presented in Diener's work (1989), via

comparison with corresponding linear regression model

counterparts.

Data provided by the TSAR/TSARINA model set are assumed

to be generated by processes completely isomorphic to real-

world processes and representative of system state treatment

responses of the F-15 Air Force Base envisioned by Diener.

The network models developed herein are to be viewed as

the product of a methodology to be used for further

exploratory research and are not intended for generalized

use, particularly in field environments.

1.7 Analysis Plan

Chapter II begins by providing definitions of readiness

and sustainability, and their relationship within the ABO

modeling environment. Section 2 describes the statistical

experiment used by Diener for data generation and subsequent

analysis. In Section 3, the concept of metamodeling is

defined, and its relationship to experimental design, its

derivation process, and its importance in applied research

is discussed. Section 4 provides an historical overview of

theoretical neural network concepts germane to this study.

Finally, Section 5 reviews selected neural network research

literature.

15



Section 1 of Chapter III describes the sample used for

metamodel development and discusses the implications of

using simulation samples in lieu of real-world data for

model fitting and training. Section 2 discusses the

regression model methodology used for this study. Section 3

presents methodological considerations in regard to

building, training, and testing the neural network models.

Finally, Section 4 lists the measures used to assess

comparative predictive accuracy, while Section 5 discusses

recognized modeling limitations and comments on comparative

model relationships.

Section 1 of Chapter IV presents the analysis of

neural network metamodel architectural formulation and

training. Section 2 discusses the analysis and findings

regarding regression/network metamodeling fitting, while

Section 3 presents the comparative analysis of predictive

accuracy for both metamodel types. Finally Section 4 of

this chapter explores the extent to which metamodel fore-

casts are statistically significantly different from sample

actuals, and Section 5 summarizes principal findings.

Chapter V, the concluding chapter, discusses how

metamodel developments and analyses directly support the

stated research objectives, provides overall conclusions for

the thesis, and ends with recommendations for future

research.
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II. Background and Literature Review

2.1 Modeling Combat Capabilitv

2.1.1 Systems Perspective. In their discussion of

assessing readiness and sustainability in the context of

combat capability, RAND researchers Rich et al. note:

Readiness and sustainability complement the other two
components of combat capability: force structure and
force modernization. Readiness is conceived of as the
force's ability to execute its combat mission effec-
tively with little notice; sustainability is the for-
ce's ability to pursue that mission for a long period
of time. (1987:2)

In simple terms, an approach to measuring readiness may be

attempted, in part, by observing the elapsed time between

the initiation of hostility and an effective response to

same, while sustainability may be addressed by analyzing the

extent to which a system's performance does or does not

degrade throughout long-term engagement. In broader terms,

both concepts share several analysis dimensions, including

the quantity and quality of system responses, the extent to

which the system can provide continued mission support, and

the extent to which the system can withstand attack damage

and recover. More importantly, these two combat capability

components are temporal (both must be measured in terms of

time), mutually interact, and are critically related to the

same underlying support system--the logistics infrastruc-

ture. This research focuses on the support system, and

attempts to understand Diener's research in explaining the
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effects of logistics infrastructure dynamics on sortie

generation, and to explore an alternative method for

predicting sortie generations based on different resource

level policies. To facilitate analysis, a unified

analytical framework is clearly indicated for attempting to

discover significant characteristics of highly dynamic

behavior of logistics support systems within combat

environments.

As a starting point, a systems perspective is adopted,

and research issues are explored as they relate to overall

system performance. In this research, the system under

consideration is a single F-15 air base, where inputs are

transformed to effect the realization of responses to

hostilities (resources are transformed via the sortie

generation process into sorties flown). Because the combat

capability components in question both share a temporal

dimension and a common logistics infrastructure (the air

base as a system), system outputs (sorties flown) must be

measured temporally in terms of a time series. In addition,

the inputs to the process must be clearly identified to

allow accurate analysis; in this study, inputs consist of 9

resources, and the environmental variables of aircraft

attrition and attack/no-attack scenario. Further, the

impact of attacks on both the system and its resources must

be considered for any realistic assessment of air base

operability. With these postulations of the system, its
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inputs, outputs, and environment, it becomes possible to

formulate a model to facilitate analysis.

2.1.2 ABO Modeling and Analysis. In their discussion

of ABO modeling and analysis, Rich et al. emphasize manage-

ment's requirement for assessing the extent to which an

aircraft support system can meet operational requirements

(1987:3). In taking the system postulated above as given,

the issues of force structure and force modernization may be

excluded to permit analysis to directly focus upon aircraft

support system assessment. The issue thus becomes the

discovery of those features most critical to mission support

for a given system and resource set, as measured in terms of

system response. In this research, the interpretation is

clear--the air base, as a system, responds to resource level

changes in terms of changes in the number of sorties flown

within a given time interval. Given that the environmental

variables of attrition and attack or no-attack scenario are

considered uncontrollable factors, the logical candidate for

system experimentation is resource level variation (manipu-

lation)--the analysis of resource policy alternatives.

Evaluating the impact of resource policy alternatives

on logistics system output requires careful modeling and

analysis in lieu of field experimentation, due to the

potential severity of interruptions to air base operations.

Several researchers have proposed numerous models and

analysis approaches for the task; Diener notes that the
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TSAR/TSARINA simulation model set was specifically designed

for such research:

TSAR was created with the interdependencies of air base
resources as a focal point. The intent was to permit
decisionmakers to explore the air base as a system in
order to seek improvements to that system. (1989:3)

With TSAR (simulating sortie generations) and TSARINA

(simulating enemy attacks) providing samples for analysis,

it becomes possible to identify and evaluate those resources

most critical to mission support at different points in

time. Specifically, air base behavior may be analyzed, at a

high level of detail, in terms of a treatment/response

model, where the analysis of sortie generation (response)

variance occurring throughout a specified period of time is

essentially enabled via imposing different initial

conditions (treatments) in resource levels (factors). The

ultimate aim of this formal experiment lies in providing

managers with tools and results that will facilitate

informed decision making:

Management within the services' logistics functions
actions ought to be based (to the extent possible) on
good estimates of their [policy alternative] effects on
overall system outputs-available aircraft and sortie
generation capability in wartime. (Rich et al, 1987:7)

The following discussion of Diener's research approach

(1989), a controlled statistical experiment, is intended to

provide an understanding of the sample generation and

analysis processes from which this study takes its genesis.

Of particular importance are the resources used as input

factors to the model, the experimental design, the issue of
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variance, and the sample organization used in the subsequent

development of simulation metamodels.

2.2 Previous Study Statistical Experiment

2.2.1 Factors.

2.2.1.1 Resource Representation. A complete

description of each experimental resource factor, low and

high levels, as well as the rationale used in determining

their respective assumed values or interpretation (in terms

of resource management policy) can be found in Diener

(1989:27-42). From a modeling perspective the factors are,

by definition, categorical; the actual metric value changes

occurring throughout the 30 day simulation horizon are

largely transparent to the researcher. This representation

schema is congruent with a high-level resource management

policy perspective--each treatment (run) constitutes an

initial air base management policy whose effects (or

consequences) are evaluated in terms of the number of

sorties generated by the base for each day of the one month

period. Due to their inherently non-metric characteristics,

factors are thus represented as indicator variables in both

the simulation used to generate analysis samples and in the

regression metamodeis subsequently used for describing the

relationship between resources and sorties flown.

The resources used in sortie generation are highly

interactive within the dynamic environment of an air base.

To render the analysis of their temporal behavior tractable,
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the exploratory research performed by Diener is scoped to

consider the importance of factors taken singly (main

effects) and two at a time (two-way interactions). Further,

what the factors represent is indicative of the level of

detail the model intends to capture: "Each factor also

represents an actual functional area found within the

logistics infrastructure of a tactical air base" (Diener,

1989:29). The simulation attempts to explore the behavior

(in terms of main effects and two-way interactions) of

entire functional areas, and does not attempt to model or

predict the specific behavior of a particular functional

area in the absence of others. The entity in question is

thus the entire logistics infrastructure that supports the

sortie generation process:

To be realistic and useful, the derived metamodel must
capture a wide spectrum of various logistics resource
positions as well as elements of an uncertain wartime
environment such as air base attack and attrition. Thus
the high and low levels for each variable are chosen so
that we have a valid and realistic inference space.
(Diener 1989:29)

2.2.1.2 Factor Levels. The specific resource

factor definitions used in Diener's experiment are based on

a high and low level for each resource and environmental

factor (see Tables 2.1 and 2.2). In general, high level

factor settings "represent the logistics infrastructure one

would expect to find supporting 72 F-15 aircraft", and

"given the 'high', it seems logical to then degrade it to

develop the 'low' level for each resource", (Diener,
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1989:29). While the reader is referred to Diener (1989) for

more detailed descriptions of the factors listed in Tables

2.1 and 2.2, the following characteristics differentiating

initial resource level settings (prior to simulation) are

noted:

The environmental factor of aircraft attrition (factor

A) "...is modeled as a stepwise reduction of the attrition

rate from 1.2% to 1.0% of sorties flown", whose timing is

based on the rationale that "...the more we fly, the less

effective the enemy is against us, and thus the attrition

rate is driven down", (Diener, 1989:41). In the low case,

attrition remains at 1.2%.

Available Aircraft (factor B) is initially distinguished

by the presence or absence of filler aircraft, while the

levels of Aircraft Battle Damage Repair (ABDR) Capability

(factor C), Personnel (factor E), Avionics Intermediate Test

Stations (AIS) (factor F), Support Equipment (factor G), and

Spares (factor H) are differentiated in terms of a

percentage or arithmetic reduction in number.

In regard to Recovery (repair of damaged runways and

taxiways) (factor D), Missiles (factor J) and Fuel (factor

K), level differentiation is accomplished temporally:

recovery procedures are slower at the low level (due to the

use of alternate procedures), and quantities of Fuel and

Missiles are diminished at low levels via less frequent and

smaller deliveries.
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Table 2.1

Resource Factors - High Levels (Diener, 1989:30)

Factor Description

B - Aircraft 72 assigned plus 18 filler
aircraft available with 72 hour
delay

C - ABDR Capability 6 assessors (2 per AMU) where
work cannot begin until damage is
inspected by a trained assessor

D - Recovery Full range of improved procedures
which includes manual
workarounds; CE and EOD personnel
equipment also included

E - Personnel Typical quantities expected --

assume these are the number
authorized by specialty

F - AIS 2 sets with 5 stations each

G - Support Equipment Typical quantities expected --

assume these are the number
authorized

H - Spares Computed by TSAR with 100% safety
factor using AFM 67-1 Chapter 11
procedures

J - Missles Initial Stocks:
300 AIM9-M
300 AIM7-M

Initial Components:
612 AIM9-M
424 AIM7-M

Deliveries:
Day 1 -- AIM9-Ms and AIM7-Ms
Days 2,5,10,15 -- AIM9-M and

AIM7-M
components

K - Fuel Deliveries arrive Days 10,15,20,
and 25
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Table 2.2

Resource Factors - Low Levels (Diener, 1989:31)

Factor Description

B - Aircraft 72 assigned, no filler aircraft

C - ABDR Capability 3 assessors (1 per AMU) where
work cannot begin until damage is
inspected by a trained assessor

D - Recovery Slower alternate procedures; CE
and EOD personnel and equipment
reduced to 75% of high level

E - Personnel Quantities reduced to 75% of high
level

F - AIS 1 set with 5 stations each

G - Support Equipment Quantities reduced to 75% of high
level

H - Spares Computed by TSAR with 10% safety
factor using AFM 67-1 Chapter 11
procedures

J - Missles Initial Stocks:
same as high case

Deliveries:
Days 5,10,15 -- AIM9-M and

AIM7-M
components

K - Fuel Deliveries arrive Days 10 and 20

Finally, it should be noted that resource factor levels

are subject to impacts from (conventional) attacks. Diener

notes that "Six attacks occur in the first five days..." and

that "The attacks are optimized from the enemy's perspective

with regard to aimpoints and time of attack", (1989:39).

His tabular summary of the conventional attacks occurring

within first 5 days of the Attack Scenario are listed in

Table 2.3.
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Table 2.3

TSARINA Simulated Attack Summary (Diener, 1989:40)

Day Hour Attackers Munitions Targets

1 0550 10 bombers 24 bombs each R,T
5 bombers 24 mines each R,T

1450 8 fighter-bombers 10 bombs each R,T
4 fighter-bombers 10 mines each R,T

124 fighter-bombers 1 bomb each A

2 0550 8 fighter-bombers 10 bombs each R,T
4 fighter-bombers 10 mines each R,T

24 fighter-bombers 1 bomb each A

3 0550 4 bombers 24 bombs each R,T
1 bomber 24 mines R,T

10 bombers 24 bombs each S,A

4 0550 4 bombers 24 bombs each R,T
1 bomber 24 mines R,T

10 bombers 24 bombs each S,A

5 0550 4 fighter-bombers 10 bombs each R,T
4 fighter-bombers 10 bombs each S,A

Legend for Targets:

Symbol Description

R Runways

T Taxiways

A Aircraft

S Support Fa-
_______cilities

2.2.2 Experimental Design. As noted, the TSAR/TSARINA

large-scale simulation experiment documented in Diener's

work provided the data sample from which regression meta-

model beta coefficients were estimated. The sample was

generated via a fractional factorial design for factors at

two levels (Diener, 1989:44; McLean and Anderson, 1984).
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Regression beta coefficient estimates were derived and

subsequently used for analyzing resource factor contribu-

tions to sortie generation for each day of the analysis

horizon, and for predicting sorties flown (Diener, 1989:110-

216).

It must be clearly understood that while regression was

utilized for analysis, a fundamental aim of Diener's

research is the explanation of response variance, where the

experimental unit is the F-15 air base, the factors are

identified as the 10 independent variables previously

discussed, and the response is the dependent variable

measuring sorties flown. The analysis of variance (ANOVA)

technique is applied via the use of multiple linear regres-

sion (note that ANOVA models can be shown to be mathe-

matically equivalent to a corresponding regression model).

In this way, a single model (for each day of the 30 day

simulation horizon) serves to explain response variable

variance and predict values of same.

With respect to sampling plan structure, the specific

experimental design and factor treatment combinations

sampled can be found in McLean and Anderson, Plan 8.10.16

(1984:265-266). Using low and high levels for each of ten

factors (nine resource and one environmental), a Resolution

V design was employed to ensure that confounding of main

effects and two-way interaction terms did not occur within
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the data sample generated for the subsequent analysis of

variance via regression (Diener, 1989:42-44).

Each treatment factor combination (simulation design

point) e~sentially defines an input vector specifying the

initial conditions (resource levels) for a single run; 128

treatments (runs) were required for each scenario (attack

and no-attack), for a total of 256 treatments (Diener,

1989:44; McLean and Anderson, 1984:256). The fractional

factorial plan employed is a 1/8 replication of 10 factors

in 8 blocks of 16 units each (McLean and Anderson, 1984:256)

(blocking is discussed below due to its relevance to simula-

tion variance reduction). A full factorial design for this

experiment would require 210 simulation runs for each

scenario (1024 possible treatments defined by all possible

combinations of 10 factors at two levels for each scenario,

2048 total), thus the 128 treatments per scenario used by

Diener constitutes a 1/8 fraction of the full factorial

design. The actual identification of which treatments are

included in the sample is a function of fractional factorial

design construction process; the reader is directed to

Montgomery (1991:514-528) and McLean and Anderson (1984) for

specific examples.

The Resolution V design employed isolates, i.e., allows

one to estimate, the contribution (effect) of each main

effect and two-way interaction: with respect to a particular

fraction's (sample) composition, the orthogonal pruperties
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of the selected experimental design ensure that each factor

is given "equal" representation throughout the sample with

respect to all other factors. With respect to a particular

sample's representativeness in relation to the underlying

population probability distribution, the issue becomes one

of assessing the extent to which a particular fractional

(being a member of the set of all possible fractional

samples) is in fact representative. In the interest of

economy, a single fractional factorial design is often

employed to ensure sufficiency of resolution for estimating

main effects and two-way interactions, with full recognition

that the particular sampling plan selected is only one of a

large set of such plans. In this way, the potentially

prohibitive cost of running a full factorial simulation is

avoided, while the representativeness of the sample is

assumed sufficient for the preliminary task of identifying

and/or screening significant factors (cost is a fundamental

consideration, especially for full factorial designs and/or

designs with several factors/factor levels). Thus, the

selected design provides an economical means for obtaining a

representative sample for the factors of interest. With

this assurance (and caveat), the next issue for considera-

tion entails controlling the degree of model variance

introduced on the response variable sorties flown.

Accordingly, the focus turns to a discussion of variance and
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how model variance may be controlled during the simulation

experiment.

2.2.3 Variance. In their discussion of variance reduc-

tion techniques, Law and Kelton note:

One of the points we have tried to emphasize throughout
this book is that simulations driven by random inputs
will produce random output. Thus, proper statistical
techniques applied to simulation output data are
imperative if the results are to be properly analyzed,
interpreted, and used (see Chaps. 8, 9 and 12). ...If
we can somehow reduce the variance of an output random
variable of interest...without disturbing its expec-
tation, we can obtain greater precision, e.g., smaller
confidence intervals, for the same amount of simulating
or, alternatively, achieve a prespecified precision
with less simulating. (1991:612-613)

In regard to the distinction between true and experimental

error variance, Diener notes that problems in sortie genera-

tion modeling generally stem from variability due to the

nature of the data and processes to be modeled, and from

variability due to the model itself. Variability due to the

(simulation) model can stem from non-constant variance both

between and within scenarios: (1) testing response variable

estimates (sorties) for conditions of normality may reveal

that they are not identically and independently distributed

(IID) across design points (recall that each estimate has

its own probability distribution), (2) common random number

streams used across all design points can induce correla-

tion, and (3) time series response autocorrelations are

present within a run (treatment) (Diener, 1989:56-59).

2.2.3.1 Variance Reduction. With respect to

controlling variance via variance reduction techniques
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(VRTs), Diener states: "By blocking based on random numbers,

we can usually reduce the experimental error as compared to

a completely randomized design" (1989:46). The implementa-

tion of the above sampling plan and a VRT are accomplished

as follows: each scenario set of 128 treatments is divided

into subsets of 16 units, where each 16-unit treatment

subset is assigned one of eight different random number

seeds in TSAR (Diener, 1989:22-26,44-49); the specific

treatments comprising each block are in accordance with the

design characteristics of Plan 8.10.16 in McLean and

Anderson (1984:265-266). Treatments are thus assigned in

groups to each stream. The VRT is introduced through the

use of common random numbers (CRN) across all runs

(treatments) within a block, on the theoretical basis of a

common starting seed. Thus correlation is induced within

each of the eight blocks, with the theoretical result of

reduced variance of the statistical estimator of sorties

flown. A similar technique is used for the attack scenario,

where both TSAR and TSARINA are employed:

In the attack case, each block has the same attack in
terms of targets and number of attacking aircraft, but
each has a different randomly selected starting random
number seed within the TSARINA model. This gives us
eight different random versions of the same attack.
(Diener, 1989:48)

The principal idea in the attack case is that within each

block, both TSAR and TSARINA use a CRN technique to

theoretically reduce the variance of the statistical

estimate of the response (sorties flown), at least in terms
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of a common starting seed shared among the runs (treatments)

contained within the block. In the interest of clarity, it

should be noted that TSAR and TSARINA, when jointly

employed, do not share the same random number stream--each

simulation model component uses its own dedicated stream,

and, as in the attack scenario, is subject to possible

occurrence of within-block divergence discussed immediately

below.

It is noted that this CRN technique may not always be

effective for TSAR/TSARINA due to the nature of the model:

In the no-attack case, each block is defined by a
different starting seed (randomly selected) for the
TSAR random number stream. The random numbers for all
random events are drawn from this stream...The flow of
random numbers is not congruent from run to run because
malfunctions cause additional random numbers to be
used... (In the attack case]... The use of random numbers
would be congruent case to case except that a
probability of arrival is also randomly checked for
each attacker. (Diener, 1989:47-49)

Noting these potential difficulties in applying the CRN, a

review of its effectiveness is in order.

2.2.3.2 Efficiency of Variance Reduction. The

fractional factorial experimental design and the CRN VRT

approach based on blocking and common random number seeds

were jointly employed for realizing a major research objec-

tive of Diener's work: "A major objective of this research

is to apply an experimental design that reduces the number

of runs as much as possible while achieving an acceptable

level of experimental error" (1989:52). In his evaluation
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of the overall success of the variance reduction and design

efficiency of same, it is observed that

The success of the variance reduction technique in this
[no-attack] case ranges from a high of 43.72% for the
Day 1 results to -4.91% for reduction Day 22 [sic]. The
average variance reduction across all thirty models is
only 5.68%...The success of the variance reduction
technique is more apparent in this [attack] case,
ranging from a low of 18.92% on Day 8 to a high of
81.90% on Day 2. The average percent reduction in
variance is 38.81%. (1989:68,72)

Thus, in general, the variance reduction obtained by the CRN

approach is significant for the attack scenario. Its

success over the no-attack scenario is explained in terms of

blocking both over the random number streams in TSAR as well

as the steams in TSARINA, in terms of a common random number

starting seed.

2.2.4 Correlated Responses and Sample Organization. As

noted, the statistical experiment produces a total of 256

samples (1 per treatment, 128 per scenario). A single

treatment specifies the initial resource levels (low/high

combinations) for a run, and the simulation subsequently

* generates a time series of 30 responses (sorties flown

measures), one response for each day of the one month

simulation run span. The response vector variance is

attributed to true and experimental error, as well as

potential time series autocorrelations.

If organized by day cross-sectionally, a daily sample

contains 128 treatment/response observations, where each

observation consists of one treatment vector and an
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associated number of sorties flown. Using this method of

organization, there are a total of sixty daily sample sets,

(30 for the attack scenario days, 30 for the no-attack

days). This cross-sectional sample organization was used by

Diener to develop regression metamodels for each day of each

scenario (60 metamodels in total). This method of sample

organization is useful in dealing with problems stemming

from autocorrelations when conducting time series analysis:

by analyzing treatment/response combinations by day cross-

sectionally, the requirement for applying time series

analysis techniques to remedy autocorrelation is mitigated

to some extent, as the time series reduces to a single

response per treatment using cross-sectional sample organi-

zation. This does not suggest that autocorrelation is not

present in the longitudinal sense but rather that the

analysis approach becomes one of applying regression tech-

niques to the sample of observations created for each day

when cross-sectional organization is applied.

Diener suggests that a multivariate stochastic model

(which assumes feedback between inputs and outputs) or an

intervention model would be useful in future research

efforts, for attempting to model the air base system

behavior in question in terms of a time series (1989:234-

239). Both in theory and practice, the difficulty and

newness of such methods must be noted. In his prognosis of

transfer function methodology, Makridakis et al. state:
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In order to appreciate transfer function modeling (or
MARIMA [Multiple Autoregressive Integrated Moving
Average modeling]), a considerable amount of careful
study is required... Multivariate extensions are being
studied in academic settings and it is expected that
more significant use will be made of the full richness
of the TF [Transfer Function] model in the near future.
(1983:534)

Diener's experiment focuses on the identification of main

effects and significant two-way interactions, an analysis

task best characterized as exploratory. Given this task and

its relative magnitude, it is important to recognize that

the preliminary identification of significant factors must

be performed prior to the application of such theoretically

based approaches to analysis (as MARIMA and TF

methodologies), if the research problem is to be tractable.

Accordingly, the analysis approach used by Diener focuses on

tl, ?ientification of significant factors. Figures 2.1 and

2.2 represents the entire sample set generated by the

simulation for both scenarios, in terms of a three dimen-

sional representation, for sampled treatments only (assigned

case numbers 1 through 128).

As illustrated, the individual treatment time series do

exhibit very strong autocorrelations in that the general

trend for both scenarios is one of a generally smooth

decline in sorties flown throughout the 30 day simulation

horizon. In addition, the Attack Scenario responses appear

to exhibit more variation than their No-Attack counterparts.

Accordingly, Diener's decisions to model the two scenarios

separately as well as cross-sectionally are appropriate.
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2.3 Metamodels

A metamodel can be understood as a simpler model of a

model. In Diener's words:

Although the simulation model is a simpler represen-
tation of reality, it can be very complex in and of
itself. Thus an even simpler model may be used to
better understand the complex model; this simpler,
auxiliary model is often called a metamodel.
(1989:6)

Friedman states that metamodels are extremely useful for

understanding and exploring a more complex model, citing

several researchers that support the contention (Friedman,

1983:28-31). Further, as discussed in Friedman and subse-

quently adopted by Diener, there is a direct relationship

between the modeling forms for a real system, simulation

model and an analytic metamodel (Friedman, 1983:43; Diener,

1989:7). Prior to discussing this relationship, the

importance of metamodels for applied research is noted.

2.3.1 Metamodels and Applied Research. The practical

significance of metamodeling is at least two-fold: (1) it

provides an alternative to the repeated application of time

and cost-intensive large-scale simulations, and (2) it

permits the researcher to focus on specific response regions

of the system under study. In the first case, analytical

metamodels provide a useful research tool in cost-

constrained environments; they can be critical in real-time

applications where issues of survival render the alternative

of time-intensive simulation untenable. In the second case,

for example, an entire field of research known as response
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surface methodology (RSM) fits a model to data (most often

simulated) in efforts to determine the optimum levels of

input factors with respect to a response variable. In this

and similar analytic modeling techniques, specific regions

of interest become visible as the result of their analytical

representation.

It should be noted that many analytic metamodels are

derived via statistical analysis and fitting of samples

provided by simulation. The point here is not to replace

simulation, but rather to recognize the benefits of applying

analytic techniques in environments that are time and cost

sensitive and where the use of supplemental analytical tools

is advantageous. Morgan and Henrion note the following in

their discussion of techniques and tools available for

uncertainty analysis, which illustrates the benefits of

employing a combination of approaches:

Combinatorial scenarios (in simulation] will cover a
larger part of the model behavior, but require far too
many model runs in general. Fractional factorial
designs (FFD) (Box, Hunter and Hunter, 1978) have been
quite popular. These select a subset of the
combinatorial scenarios...The main purpose of the
sampling process is to identify those uncertain inputs
that contribute most to the output, that is,
essentially perform uncertainty analysis. Usually just
a few uncertain inputs are found to contribute the
majority of uncertainty in the output. The simplified
response surface need model only the effect of these,
and can generally ignore the other inputs. (1990:210-
211)

2.3.2 The Modeling Hierarchy. The real system

(physical reality) form, a relationship between an unknown

number of factors and a system response, is postulated as
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= g(x1 x2 , ... Xq) (2.1)

where
= the physical system response,

X1to q = the q environmental or controllable input
factors, and

go = the unknown relationship between the
response and the q factors, where the value
of q (the number of factors) is unknown.
(Friedman, 1983:26)

A simulation model can be conceptualized as an approxi-

mate functional representation (as a response function) of

the true system formalized in Eq (2.1) (Diener, 1989:23).

As a primary, or first-order, model, it estimates the real

system by approximating go in terms of a postulated func-

tion f(, where f() represents the entire simulation,

including all stochastic processes and random'variate

interactions. The number of q (input) factors is set at a

specific constant, say k. Thus, the simulation model

estimate of the real system can be represented as

yi = f(xilXi 2,...xij) + i
i = l..

j = l,...k (2.2)
where

Yi= the simulation response in the ith
replication,

xij = the value of the jth factor in the ith
replication, and

Ci = the error term in the ith replication
(Friedman, 1983:30)
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Finally, an analytic metamodel of the simulation

process given in Eq (2.2) can be understood as an attempt to

simplify the stochastic behavior of the simulation in terms

of an analytic form (note the need for replication with

respect to parameter estimates from which to derive the

metamodel). In this sense the simulation model is a primary

or first-order model, while the analytic model is a second-

order model (hence the concept metamodel). Friedman notes

that several researchers favor the additive model of experi-

mental design (the general linear metamodel) in initially

selecting a metamodel for exploratory system representation

(1983:29); this model form was adopted and employed.by

Diener (1989). The initial metamodel form used in such

research is given by Friedman as

Yi=P + E (Pjxi1) + 61 i = 1,... ,n

j = l,...,k (2.3)
where

Yj = the response value of the ith observation,

f0 = a weight constant (parameter) understood as
the y-intercept when all other xjs = 0,

Pj = the weight constant (parameter) for the jth
factor x,

xij= the value of the jth factor in the ith obser-
vation, and

Ci= the unknown error term for the ith observation.
(1983:29-30)

Friedman postulates a clear relationship between the

design of simulation experiments, the application of a
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metamodel, and the application of statistical tests to the

experimental results:

Depending on the experimental layout, whether the
factors are quantitative or qualitative, and the aim of
the study, the general linear metamodel (linear in the
parameters, not necessarily in the x's)...may be
applied to regression analysis, analysis of variance,
analysis of covariance, t-test, paired t-test, etc.
Whether a researcher explicitly says so or not,
designing simulation experiments which will be analyzed
via one of these statistical tests implies the use of
this general linear metamodel in one of its forms...
(1983:31)

A important point for this research lies in this observa-

tion: in general terms, the analysis of data via statistical

techniques presupposes the existence of a specific relation-

ship between variables. Most often, this relationship is

represented in terms of an assumed functional form. Thus,

prior to analysis, a functional relationship is assumed to

exist, a priori, among variables. This in turn suggests that

the characteristics of a selected experimental design are

largely defined by the assumed functional form of the

relationship of variables under study. The key point is

that a functional form is assumed prior to sampling,

modeling and analysis activities, de facto. Thus, a brief

examination of regression metamodel forms, in relation to

experimental design considerations, is in order.

2.3.3 Metamodels and Experimental DesiQn. In their

discu3sion of factorial designs, Law and Kelton note the

following regarding a factorial design for an (s,S)

inventory model for two factors at two levels each:
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Calculation of main effects and interactions of 2
k

factorial experiments is actually equivalent to esti-
mating the parameters in a particular statistical
regression model of how the response depends on the
factors. For Example 12.1 this regression model is

R(s,S) = a + bx5 + cxs + dxSx$ +e

where R(s,S) = response as a function of s and S...
(1982:376)

Note that this two factor level regression model contains

main effect and secondary interactions terms--the terms of

interest to Diener. Here there is a direct correspondence

between the design of the factorial experiment and the

general form of the regression metamodel selected, as

implied by Friedman (1983:31). Further, this correspondence

demonstrates the congruence of Diener's selection of model

form for exploratory analysis (of main effects and secondary

interactions) with the observations of McLean and Anderson

(1984) previously noted. Finally, the assumption of a

specific functional form prior to sampling is clear.

Although expanded to include additional factors (10

total), Diener's metamodels possess essentially the same

form as Law and Kelton's above, and include terms for main

effects, secondary interactions, error, and an additional

variable added to account for the effects of blocking.

The no-attack and attack scenario metamodel forms are given

in Diener (1989:49-51) as Eq (3.3) and (3.4), and are

duplicated here as Eq (2.4) and (2.5). The metamodel form

for the no-attack scenario is given as
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10 9 10

S i = 0o(i) + E 3j(i)xlj + E fljk(i)xljXlk + B 11 (i) + C(i)

j=l j=l k=j+l

i = 1,...,30 (2.4)

where
Si  = the number of Sorties flown on Day i,

P0 (i) = the y-intercept when V(j>O) (Ij = 0),

Pj(i) = the degree of importance of variable xlj
on the variation of Si,

Pjk(i) = the degree of importance of the two-way
interaction of variables x1j and Xlk on the
variation of Si.

x1j = the level (indicator variable) of factor xi on
Day 1,

B11(i) = reflects the random effect of blocking on Day
i due to the random number streams in TSAR,
where

B11 (i) - N(0,o2 ), and

e(i) = reflects the experimental error, where

e(i) - N(0,oa)

The metamodel form for the attack scenario is given as

10 9 10

S= 1 0 (i) + E P*j(i)xj + i jk(i)XljXlk + B*11 (i) + M(i)

j=l j=l k=j+l
i = i,...,30 (2.5)

where Shr = the number of Sorties flown on Day i,

f' 0 (i) = the y-intercept when V(j>0)(/3O = 0),

1(i) = the degree of importance of variable Xj
on the variation of Sp
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P jk(i) = the degree of importance of the two-way
interaction of.variables x1j and xlk on the
variation of Si,

Xlj = the level (indicator variable) of factor x,
on Day 1,

B 11(i) = reflects the random effect of blocking on
Day i due to the random number streams in
TSAR and TSARINA, where

B*11(i) - N(0,ao2.), and

c (i) = reflects the experimental error, where

e*(i) - N(O,a 2)

The metamodel forms in Eq (2.4) and (2.5) can be viewed

as class definitions: they serve as forms to guide the

researcher (at least implicitly) in the design of the

experiment, and define the set from which specific models

are selected (the selected models may be understood as

instances of the defined class).

In Diener's metamodels, the no-attack scenario meta-

model form given in Eq (2.4) is comprised of the representa-

tion of the main effects of 9 resources and the environ-

mental variable of aircraft attrition, and all possible two-

way interactions of the 10 main effects. The attack meta-

model form given in Eq (2.5) is identical to that of the no-

attack metamodel, with the caveats that the response

variable, all beta coefficients, the blocking variable, and

the error term are all modified by the superscript 11*1,

denoting the additional influence of attacks (induced by

TSARINA) on parameter estimates. Thus, both attack and no-
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attack metamodels are identical in form, but are different

in terms of parameter value estimates.

2.3.4 Functional Foundation of Modeling and Analysis.

In light of the previous presentation of the metamodeling

hierarchy and the specific analytic metamodels forms

selected by Diener, it becomes possible to logically deduce

and explicitly state a key point regarding the modeling pro-

cess: when modeling a physical system, the functional form

explicitly or implicitly selected by the researcher deter-

mines, in general, the sampling plan, experimental design,

and statistical techniques that will be used to analyze that

system, i.e., the viability of the modeling process is

contingent upon the functional form selected prior to

modeling and analysis. In Diener's research, the models are

assumed to be linear, with significant two-way interaction

terms; the deduction above is applicable to his research by

virtue of the mathematical equivalence between ANOVA and

regression models. Given this selection of form, the

remaining issue becomes the selection of specific metamodels

for use in analysis. In the following discussion regarding

the metamodel selection process, the focus is strictly

limited to those models that are linear in the betas (the

parameters), as this characteristic is assumed in Eqs (2.4)

and (2.5).

2.3.5 Metamodel Selection. In regard to the selection

of a particular model from the class of metamodels defined
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by a regression metamodel form, several selection rules are

possible, including techniques such as backward, forward

and/or stepwise elimination of variables, highest R2, and

others. In Diener's research, the specific daily regression

metamodels are selected via backward elimination of vari-

ables. It is usually the case that one cannot determine the

best model, but rather chooses the best from a set of

candidates (Meyers, 1986:100). Two possible reasons for

this difficulty are (1) the class definition of the model

form selected precludes other model forms from consideration

(for example, only linear forms are assumed), and (2) the

number of possibilities generated from a selected form is

too large to enumerate and subsequently analyze in terms of

a decision (selection) rule.

Given that the metamodel form has been specified as

linear, we focus next on metamodel assessment measures, to

illustrate that metamodel selection is contingent upon

analysis requirements. In particular, the point is made

that goodness-of-fit is not equivalent to goodness-of-

prediction, by way of the comparison of two statistical

measures--one used for fitting, the other for assessing

predictive potential.

2.3.6 Assessing Fit and Predictive Potential. Clearly,

metamodel predictive capability can be assessed on the basis

of empirical performance (a posteriori) through testing and

validation procedures involving split samples, 10-fold
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validation, and other techniques (Meyers, 1986; Weiss and

Kulikoski, 1991). The question is whether predictive

capability can be assessed during the model fitting phase

before testing or validating the model on independent

samples, i.e., whether metamodel predictive potential can be

assessed a priori.

With regard to standard practice in regression model

fitting, one of the most often used statistics is the

coefficient of determination, or R2 (or equivalently, the

square of the coefficient of correlation). This statistic

rests upon fundamental concept of partitioning total

variability in terms of the regression model. Expressed as

a functional relationship, it is given by Meyers (1986:16)

as

(yi y :) 2+ (yi y1
i i 1

i = l,...,n (2.6)

or, equivalently, as SSTota t = SSR + SS~es

where
SSTotat = the total variability observed,

SSReg = the variability explained by the model, and

SSRes = the variability not explained by the model.
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R2 can then be formulated (Meyers, 1986:28-31) as

R2 = SSeg / SSTotat (yi -Y)2/ (Yi -2-Y)
i i

i = 1,...,n (2.7)

or, equivalently, as R2 = 1 - (SRes / SSTotat)

where
SSes = the variation unexplained, and

SSTotaL = the total variation observed.

R2 is thus the proportion of variability explained or

accounted for by the model. It is important to note that

all available data points are used in the statistic's

derivation--all values are used for fitting.

In regard to assessing metamodel a priori predictive

capability, a set of residuals is required such that the

observation(s) used in fitting are not the same as those

used for assessing predictive potential. The Prediction Sum

of Squares (PRESS) statistic, RPre' which is based on a

"leaving-one-out" validation procedure, offers a potential

solution: An observation y, is omitted, the model is fit

(the parameters are estimated) with the remaining n-1 data

points, and a prediction for the omitted observation is

generated. In this way, n PRESS residuals are obtained and

a PRESS Sum of Squares may be derived; Meyers lists it as

PRESS = (Yi - i,i) 2

PRt y= l,...,n (2.8)

48



where

Yi,-i= the prediction generated by the candidate
model whose parameter estimates are derived
in the absence of y,.
(106:87)

The PRESS Sum of Squares provides the means for the

calculation of a PRESS statistic in a manner analogous to

the computation of the correlation of determination, or R2 .

The statistic Rpre is thus given (Meyers, 1986:107) as

Rp= 1 - PRESS / (y. y.)2
i i = 1,...(2.9)

Note that the estimate for a given response is derived

in the absence of that response. Clearly, the candidate

model with the smallest rp should be considered as a

potentially good predictor, although many other factors must

be considered (Meyers, 1986:111-133). Finally, when suffi-

cient data are available, data splitting validation tech-

niques become viable (using an independent test data set to

validate a fitted model's predictive performance), which can

provide the analyst a clear and direct assessment of a

candidate model's predictive capability.

The coefficient of determination (R2) and the PRESS

statistic (Rpre) are presented here (Eq(2.7) and (2.9),

respectively) to emphasize that at least three logically

distinct possibilities (goals) exist for the researcher when

modeling a system in terms of a functional relationship: the
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researcher may wish to explain (fit) a system, predict the

future behavior of that system (assuming a causal relation-

ship exists), or, in the interest of parsimony, may wish to

do both with the same model. In Diener (1989), the emphasis

is clearly on explanation, although prediction is listed as

a research issue (1989:9). A seminal issue for this

research is simply whether or not a specific non-linear

modeling technique will yield better results in predicting

and explaining the air base system behavior than Diener's

metamodels. Accordingly, the focus of discussion turns to

the conceptual background that underlies this method, which

is commonly-referred to as artificial neural network

modeling.

2.4 Artificial Neural Network Concepts

Artificial neural systems, also referred to as neural

networks, are a recent and important development. Neural

networks stand apart from other artificial intelligence

techniques in their ability to detect patterns hidden in

many forms of data. Fundamentally, a neural network is a

pattern classification system that maps input to output

patterns. Generalizing this concept for any number of

inputs and M output classifications, Lippmann states:

The goal of pattern recognition is to assign input
patterns to one of a finite number, M, of classes ...
Input patterns can be viewed as points in multi-
dimensional space defined by the input feature measure-
ments. The purpose of a pattern classifier is to
partition this multidimensional space into decision
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regions that indicate to which class any input belongs.

(1989:47-48)

2.4.1 Modeling the Brain. Artificial neural systems

researchers attempt to model human learning processes by

constructing simplified models of the human brain (Hecht-

Nielsen, 1988:37). "This idea of comparing the central

nervous system to the currently most complex information

processing systems currently available can be followed

throughout the literature" (Rogers et al., 1990:6). In

spite of the dangers of over-simplification (Schwartz,

1988), a model of a biological system often serves as a

springboard for research (Baum, 1988:205). Cowan and Sharp

credit the birth of symboli6 neuronal modeling to McCulloch

and Pitts:

Perhaps the first major contribution was in a paper by
Warren McCulloch and Walter H. Pitts published in 1943.
In this paper McCulloch and Pitts applied symbolic
logic to the problem of describing what neural nets can
do. In effect they proved that all processes that can
be described with a finite number of symbolic
expressions ... can be embodied in nets of what they
call "formal" neurons. (1988:86)

From this, subsequent research efforts focused on

representing neuronal processes mathematically, using formal

neural network representations for the research framework:

McCullogh and Pitts left a strong imprint on the
science of neural nets with their seminal study in 1943
of the mathematical representation of neuronal
modelling. It was not their model per se that led
others to attempt mathematical neural net descriptions,
but the evidence that such descriptions could be
fruitful. (Barron et al., 1987:1)
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2.4.2 LearninQ and Representation. Learning is clearly

critical for survival in that it provides a means by which

organisms adapt to the environment. One of the first

formulations of a biological learning law was offered by

Hebb: "In 1949, Hebb proposed that the connectivity of the

brain is continually changing as an organism learns

differing functional tasks and that cell assemblies are

created by such changes" (Cowan et al., 1988:88). In terms

of a process, the Hebbian learning law states that "...when

a cell A repeatedly participates in firing cell B, then A's

efficiency in firing B is increased" (Khanna, 1990:11).

This increase in the firing rate (efficiency) of cell A can

be represented by increasing the value of the weight of the

synapse connecting neurons A and B (Lippmann, 1987:13-14).

While many new learning paradigms have been developed (see

Hecht-Nielsen, 1990:46-77, for a broad review) that are, in

general, much more powerful than the original Hebbian law,

the fundamental concept of network learning can be under-

stood in terms of synaptic weight adjustments: "The ability

of the networks to learn actually refers to the networks

adapting their internal adjustments or weights following

exposure to the data" (Rogers et al., 1990:2).

The development of an artificial neuron called the

perceptron by Rosenblatt in 1959 was a milestone in neural

network research (Rogers et al., 1990:13,41). Expanding the

domain investigated by McCullogh and Pitts, Hebb, and
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others, Rosenblatt explored and developed several neural

network architectures and learning rule properties that

collectively defined a paradigm for neural network research

(Pao, 1981: 115-123; Pineda, 1989:50). Through his and

other research efforts, a distinction between representation

and learning became apparent:

The proof of the perceptron learning theorem
(Rosenblatt 1962) demonstrated that a perceptron could
learn anything that it could represent. It is important
to distinguish between representation and learning.
Representation refers to the ability of a perceptron
(or other network) to simulate a specified function.
Learning requires the existence of a systematic
procedure for adjusting the network weights to produce
that function. (Wasserman, 1989:29)

Learning and representation are thus important and

distinct considerations (Hinton, 1989:188-189). For many

artificial neural network models, information processing is

performed via the representation of a function in terms of

layers of neurons interconnected by synapses whose strengths

(weights) are modifiable--a configuration clearly inspired

by neurophysiology. Rosenblatt and others effectively

demonstrated that in using such an architectural approach or

representation (a symbolic neural network), it becomes

possible to discriminate between or correctly classAfy input

patterns, when synaptic weights possess the proper values.

In general, the ability of a network to model or

represent functions is thus related to its architecture,

which includes neuron layering, synaptic connectivity,

various activation and transfer function types, etc., while
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the process of training the network (i.e. learning) is

achieved via the application of a rule or algorithm that

modifies its synaptic weights sufficiently to allow input

vectors to be correctly classified. To clearly understand

artificial neural network processing, an analysis of the

principal components of a network, including neurons, neural

connectivity, and learning rules, is thus required.

2.4.3 Symbolic Neuron Anatomy. Figure 2.3 is a repre-

sentation of the perceptron, and is offered to illustrate an

example of a symbolically modeled biological neuron

(Stanley, 1988:84,124; Rogers et al., 1990:49; McClelland

and Rummelhart: 1988, 122). This model (or one of its many

variants) is fundamental to several neural network architec-

tures used in research. Its basic properties are delineated

as follows, in terms of the illustration.

Inputs (xi) to the neuron enter by way of synaptic

connections carrying output signals originating from other

neurons or sensor devices. Note there are two numerical

components here for each input value, the value itself,

produced as output from a sending neuron, and the weight

(value) of the synapse (w,) carrying it. An additional

input originates from a bias neuron, which sends a value

fixed at +1 to any receiving neurons; the synapse weight

carrying this value (0), however, is not similarly

constrained (it undergoes the usual modification during

training). Threshold or bias neurons play different roles
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in network research; for this study, unless otherwise noted,

it is assumed that the bias value is an input value to

receiving neurons.

ro

=1 Wixi + B

+1

f(a)

-0.5

-~ a

Figure 2.3 The Perceptron
(Rogers et al., 1990:49)

To model the total strength of incoming signals on the

receiving neuron, all values are passed through an

activation function, which often simply transforms them to a

weighted sum, Z(wix i + 0), where each input is multiplied by

the weight value of its carrying synapse (Stanley, 1989:84-

85). Thus, the activation function determines the response

or excitation of the neuron to its total incoming stimuli

(input). As indicated in Figure 2.3, the inputs are summed,
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then passed through a function f (discussed next). As an

alternative activation function example, some include terms

that take the previous activation level of the neuron into

account when determining its current activation level, for

purposes of modeling local neuronal self-excitation

(Stanley, 1990:85).

The neuron's activation value is prepared for export by

the application of a transfer function f(a), (where a repre-

sents the neuron's activation level), which is often non-

linear in form. Many different transfer functions are used

in network research, including hard limiter, threshold

logic, hyperbolic tangent and sigmoid (or logistic) func-

tions (see Rogers et al., 1990:51; Wasserman, 1989:16-17;

Moore, 1990:32). The function below the perceptron in

Figure 2.3 is a representation of the output curve for the

sigmoidal transfer type, where a is scaled from -1 to +1 and

f(a) from 0 to 1. The transfer function transforms the

activation value into the neuron's output signal, which is

then carried to other neurons in the net via synaptic

connections.

2.4.4 Error-Driven Learning. For many supervised

learning techniques, input/output vector pairs (training

examples) comprise a training set used for teaching a neural

network a classification problem. Learning is said to be

supervised in that the set of training examples consists of

both the question and the correct answer: the input vector
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component represents the pattern to be classified, while the

output vector component represents the correct (known)

classification for its associated input vector. The

training set is repeatedly presented to a network to effect

learning via weight modification: networks are trained to

correctly classify input vectors by iteratively forcing the

network to compute a classification for the training input

vector, comparing this calculation with the correct classi-

fication represented by the training output vector, and

adjusting network connection weights via some measure of

difference or error between the two. Weights are adjusted

by an algorithm or procedure (learning rule) that attempts

to minimize the error between the computed and correct

classifications. Weight adaptation may occur with each

training presentation on a case by case basis, or after all

examples in the training set have been passed through the

network. Both the information processing activity of an

artificial neuron and the concept of network learning are

discussed next, in the context of a specific neural network

architecture.

2.4.5 The Perceptron Network. Figure 2.3 in fact

illustrates a network consisting of a single perceptron. As

previously noted, the activation function produces a

weighted sum of the inputs plus the bias term, and a

sigmoidal transfer function produces the perceptron's output

value, which often ranges from 0 to 1 (depending upon the
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choice of transfer function parameters). The intended

function of this network is to classify input training

vectors in one of two classes. The perceptron learning

procedure is given in Rogers et al. as

1. Initialize weights and thresholds to small random
numbers. We recommend using a uniform distribution from
-0.5 to +0.5.

2. Present training vector and desired output.

3. Calculate the actual output:

N-1

y fh( E wixi + 0)

i=0

where N is the number of inputs.

4. Learning:
+

wi + w + n(d - y)x,

where n is the gain, 0 n5 1, d is the desired out-
put. Note: only learn when in error. Alternative
learning paradigms include LMS [Least Mean Square)
Widrow-Hoff or Gaussian maximum-likelihood weights and
threshold selection. (1990:52)

Perceptron learning is thus an iterative process whose

ultimate aim is to modify network synapse weights until a

state is achieved such that the input training vectors are

properly classified by the output classification value

computed by the network. In terms of a geometric interpre-

tation for this example, training, in essence

...amounts to arranging the weights such that in the region
of one class of input objects the output of the perceptron
would be near 1; when the features represent the other class
of objects, the output of the perceptron would be near zero
(or -1 depending on the type of nonlinearity chosen).
(Rogers et al., 1990:50,52)
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2.4.6 The Linear Separability Problem. The architec-

ture of Figure 2.3 can be extended to a layer of perceptrons

(additional perceptrons that receive network inputs) (Rogers

et al., 1990:52,53). A difficulty known as the "hyperplane

limitation problem" (Rogers et al. 1990:53,55) or "linear

separability problem" (McClelland and Rumelhart, 1988:123-

126) exists for such networks, however, as a consequence of

their architecture. For example, given a network consisting

of a single perceptron network with two inputs (thus a

2-space input dimensionality), the network will learn to

correctly classify inputs only if the classes are separable

by a line. For single layer perceptron networks with

several inputs (more than 2), the limitation is that classes

must be separable by a hyperplane. If this condition does

not obtain, the perceptron learning algorithm will not

converge (will not sufficiently separate classes into

distinct groups after a number of iterations or trials).

Two potential difficulties here stem from the possibility

that the representation capability of the network's

architecture is insufficient for the task at hand, and/or

from the possibility that learning algorithm may possess

severe limitations and thus require modification.

Due to the restrictions imposed by the single layer

perceptron, and the fact that there exist classification

problems for two classes are not linearly separable, the

problem of representation becomes fundamental. The solution
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requires the addition of a hidden node(s) (neurons between

the input and output layer) (McClelland and Rumelhart,

1988:123-126). A multi-layer architecture, combined with a

variant of the least squares error learning rule (modified

for multi-layer network training), makes it possible for

neural networks to represent functions in terms of input-

output mappings. Prior to discussing the specifics of the

solution to the linear separability problem, an analysis of

the least squares error learning rule properties is

required, as an understanding of its basic form is seminal

to the modifications that follow.

2.4.7 Least Sauares Error Rule Characteristics. The

single-layer (input layer to output) perceptron may use a

variety of transfer functions, as previously noted; in the

following discussion, a sigmoidal form is assumed. Hinton

provides a clear formulation of the least squares learning

procedure in his discussion of supervised learning proce-

dures (1989:193-198). Starting with the assumptions of a

single-layer network and "...output units whose states (i.e.

activity levels) are a continuous smooth function of their

total input..." (1989:193), he describes it as follows:

A measure of how poorly a the network is performing
with its current set of weights is

E = 1/2 (yj~c - djc)2 (6)
p,c

where is the actual state of output unit j in
input-output case c, and dj.c is its desired state. We
can minimize the error measure given in (6) by starting
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with any set of weights and repeatedly changing each

weight by an amount proportional to aE/aw.

Awji = -e(aE/awijd. (7)

In the limit, as c tends to 0 and the number of updates
tends to infinity, this learning procedure is
guaranteed to find a set of weights that gives the
least squared error. The value of aE/aw is obtained by
differentiating (6) and (1).

aE/awji = E aE/ay, dyj/dx axj/ay,
cases

E (yj - d1) dy1/dx y, (8)
cases

If the output units are linear, the term dy,/dx, is a
constant. (1989:193-194)

Further, Hinton notes that the geometrical interpretation of

this learning rule can be understood in terms of a gradient

descent search for a local minimum (1989:194-195):

We construct a multi-dimensional "weight space" that
has an axis for each weight and one extra axis (called
"height") that corresponds to the error measure. For
each combination of weights, the network will have a
certain error which can be represented by the height of
a point in weight space. These points form a surface
called the "error surface"...So gradient descent is
still guaranteed to work for monotonic nonlinear input-
output functions provided a perfect solution exists.
However, it will be very slow at points in weight space
where the gradient of the input-output function
approaches zero for the output units that are in error.

Hinton thus notes that a perfect solution for the gradient

search may not exist (or may not be found within an accept-

able time limit). In this case, one approach is to find a

solution that yields an acceptable error level, for example,

the mean squared error measure between the target classifi-

cation value and the network's output computation of same.
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This is a practical approach, especially when one considers

that the technique is highly iterative and computationally

intense (Weiss et al., 1991:101-102).

The least squares error approach provides the founda-

tion for the learning algorithm used for training multi-

layer perceptron neural networks. Upon modification, it

provides a means to derive a solution, or at least a

solution within the limit of an acceptable error level.

What requires discussion next is how it was determined that

the addition of hidden neurons (contained in the hidden

layer between the input and output layers) would overcome

the linear separability problem originally posed. Both

considerations--the addition of hidden layer neurons to aid

in representation and a modified learning rule required for

training these multilayered networks--are integral to the

solution. The general solution is commonly referred to as

the backpropagation neural network.

2.4.8 The Backpropagation Neural Network. Given a

classification problem possessing non-linear characteristics

(here, a two-class discrimination problem), the issue

becomes how to construct a neural network representation of

the problem that can overcome the linear separability

limitation and learn to correctly classify input vectors.

The combination of the multi-layer perceptron network and a

modified least squares error learning rule provides the

solution.
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2.4.8.1 Hidden Layer Neurons. A classical problem

studied widely throughout the literature is the exclusive or

(xor) problem (see Moore, 1990:35-37, for a clear presenta-

tion), which was proven intractable (not linearly separable)

for a single layer perceptron by Minsky and Pappert in 1969.

Hecht-Nielsen notes

Minsky and Pappert's book Perceptrons proved
mathematically that a perceptron could not implement
the EXCLUSIVE OR (XOR) logical function
(f(0,0)=f(0,1)=0,f(0,1) =f(1,0)=l)...,nor many other
such predicate functions (binary scalar functions of
binary vector variables). (1990:17)

With the addition of a hidden neuron, the problem becomes

solvable. Figure 2.4 illustrates how the two classes in

question may be correctly classified if a 3-space plane is

applied to the task, and Figure 2.5 illustrates one network

architecture that can implement, or represent, the solution.

By adding a single hidden node (in the hidden layer), the

problem is tractable; note that the addition allows the

network to discriminate via the addition of a dimension

(from 2 to 3-space). In essence, the added input node

performs an "and" operation on the first two inputs to

create the third coordinate or feature. This enables the

network to classify correctly the original 2-space classifi-

cation problem by separating classes with a 3-space plane

(all four possible xor input value pairs are represented in

terms of the coordinates of the vertices of 3-space cube

shown in Figure 2.4). Thus, for this network solution, the

addition of a hidden unit increases the dimensionality of a
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network to an extent that allows correct xor pattern classi-

fication. In their discussion of two-input binary

functions, researchers McClelland and Rumelhart note in

general that

...if you allow a multilayered perceptron, it is possi-
ble to take the original problem and convert it into
the appropriate three-dimensional problem so it can be
solved. Indeed, as Minsky and Pappert knew, it is
always possible to convert any unsolvable problem into
a solvable one in a multilayer perceptron. (1988:125)

(1.1,.1)

(0,0,0) (1,0, 0)

Figure 2.4 XOR Problem Solution
(McClelland and Rumelhart, 1988:125)
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Figure 2.5 XOR Discriminating Network
(McClelland and Rumelhart, 1988:126)

A key point here is that network representation

requirements for pattern classification problems can be

thought of, to a large degree, a problem of formulating the

appropriate multi-dimensional decision regions. In his

discussion of the multi-layer perceptron, Moore notes

Unlike the single-layer perceptron, the multi-layer
perceptron can form bounded or unbounded convex
decision regions. A bounded convex region means a
particular class is contained in a particular finite
region while an unbounded convex region contains a
class in an infinite region. The convex regions are
constructed by the intersections of half planes which
are formed by the processing elements in the first
hidden layer. Each of the processing elements in the
first layer acts like a single perceptron and forms a
half plane region bounded by a hyperplane. The decision
region for a particular class becomes the intersection
of all the half planes that are formed be each of the
processing elements. (1989:37-38)
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Moore additionally notes that the shape of the decision

region is contingent upon the type of transfer function

employed:

The shapes of the decision regions can change depending
on the types of transfer functions used by the
processing elements. When sigmoidal nonlinearities are
used instead of hardlimiting nonlinearities, the
decision boundaries are curved instead of straight line
segments. Networks form these decision regions by using
the backpropagation training algorithm (17:16).
(1989:37-39)

2.4.8.2 The Backpropagation Learning Rule. As

suggested by McClelland and Rumelhart, multi-layer percep-

tron networks are indispensable for problem representation.

Yet such architectures create another difficulty, as network

training algorithms must modify weight synapses for

additional (hidden) layers of neurons. Hinton describes the

backpropagation of errors learning solution for this problem

as follows:

The "backpropagation" learning procedure...is a
generalization of the least squares procedure that
works for networks which have layers of hidden units
between the input and output units .... In a multi-layer
network it is possible, using (8) (as cited above], to
compute aE/awji for all the weights in the network
provided we can compute aE/ay. for all the units that
have modifiable incoming weights .... The central idea of
backpropagation is that these derivatives can be
computed efficiently by starting with the output layer
and working backwards through the layers. For each
input-output case, c, we first use a forward pass
(using weighted sum activations and sigmoidal transfer
functions], starting at the input units, to compute the
activity levels of all the units in the network. Then
we use a backward pass, starting at the output units,
to compute aE/ay, for all the hidden units. For a
hidden unit, j, in layer J the only way it can affect
the error is via its effects on the units, k, in the
next layer K (assuming units in one layer only send
their outputs to units in the layer above). So we have
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aE/ayj = E aE/ay, dyk/dXk dxk/dyj
k

= Ea E/ay k dyk/dXk Wki, (9)
k

where the index c has been suppressed for clarity ...
Notice that the computation performed during the
backward pass is very similar in form to the forward
pass (though it propagates error derivatives instead of
activity levels, and it is entirely linear in the error
derivatives). (1989:198-199)

With the multi-layered neural network and backpropaga-

tion learning rule combination, many function classification

mappings thought to be intractable are provided a solution.

The implementation algorithm for backpropagation is given by

Rogers et al as

1. Initialize weights and thresholds to small random
numbers. We generally use a uniform distribution from
-0.5 to +0.5.

2. Present training input and classification (desired

output).

3. Calculate output. (the forward pass]

4. Learn (adapt weights and thresholds) [the backward
pass]

wij = w ij + 7&1jxi + a(wij - w ij)

where wj is the weight from node i to node j in the
next layer, x(i) is the output of node i, and 6(j) is
the error associated with node j. n and a are learning
rates ... w.. is the new weight value and w,, is the
old weight value. w is the value of the weight
before the last update. Thresholds are adapted
similarly where x, is replaced by +1 if the threshold
is added to the weighted sum and -1 if it is
subtracted. The qj are defined as follows:

yj(l-yj)(dj-yj) for output node j
17

xj (l-xj)E flkWjk for hidden node j
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where d. is the desired output for output node j and y,

is the actual output. (1990:59)

2.4.8.3 BackProDagation Networks as Function

Mappinqs. A key concept for this research lies in under-

standing that the backpropagation network is, in essence, a

generalized non-linear (note that sigmoid transfer functions

are typically employed) mapping function (between its input

and output vectors) formulated by successive (iterative)

refinement via a gradient descent heuristic. Hecht-Nielsen

notes

The information processing operation that backpropaga-
tion networks are intended to carry out is the approxi-
mation of a bounded mapping or function f: A c -+ Rm,
from a compact subset A of n-dimensional Euclidean
space to a bounded subset f[A] of m-dimensional
Euclidean space, by means of training on examples
[input/output vector pairs] (x(l),y(l)), (x(2),y(2)),
...(x(k), y(k)),... of the mapping, where y(k) =
f(x(k-)). As always, it will be assumed that such
examples of a mapping f are generated by selecting x(k)
vectors randomly from A in accordance with a fixed
probability density function p(x). The operational use
to which the network the network is to be put after
training is also assumed to involve random selections
of input vectors x in accordance with p(x). (1990:125)

From this perspective, a backpropagation neural network is

essentially a non-linear function approximation technique

that maps an n-space input vector to an m-space output

vector. To emphasize, note that the input/output vector

component values need not be binary (0,1):

Many applications use bit representations (0,1) for
symbols, and attempt to have a neural net learn funda-
mental relationships between symbols...There is no
fundamental reason, however, to use integers as values
for Input and Output. If the Inputs and Outputs are
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instead a collection of floating point numbers, then
the network, after training, yields a specific
continuous function in n variables (for n inputs) ...
that provides a type of nonlinear, least mean square
interpolant formula for the discrete set of data points
in the training set. (Lapedes and Farber, 1987:4)

Thus, backpropagation nets can map both boolean and

floating point (real) input/output vectors. At a

fundamental level, the representation these networks

accomplish is essentially one of two basic types: in the

case of mapping symbolic (0 and 1-valued) input vectors, the

networks map the vertices of an n-dimensional hypercube

(where n is the number of input nodes) to their output(s);

for continuous (real) valued data, they form a multi-

dimensional curve from which output values are interpolated

or extrapolated. Note that in the case of boolean

(symbolic) mappings (0-1 hypercube vertices as input), there'

is no sense in which the network provides computed outputs

via interpolation--the networks are solely provided the

coordinates of hypercube vertices from which to accomplish

an associated output mapping.

Hecht-Nielsen attributes the first insight in deter-

mining "... what functional forms can be approximated by

neural networks..." (1990:131) to the discovery of

Kolmogorov's theorem:

In 1957 Andrei Kolmogorov published an astounding
theorem concerning the representation of arbitrary
continuous functions from the n-dimensional cube [0,1]n

to the real numbers R in terms of functions of only one
variable... (1990:122-123).
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Stated in terms of a neural network, Hecht-Nielsen gives

this theorem as

THEOREM 1 Given any continuous function f : [0,1)"

rI, f(x) = y, f can be implemented exactly by a three-
layer feedforward neural network having n fanout pro-
cessing elements (inputs] in the first (1 - input)
layer, (2n+1) processing elements in the middle layer,
and m processing elements in the top (y - output) layer
(1990:122)

In discussing the parameters and functional forms required

to actually implement this theorem, Hecht-Nielsen notes that

no method of construction has been devised. Kolmogorov's

theorem is an existence theorem--it guarantees a solution

exits for certain function mappings, but it tells us nothing

about the functional forms or constants required for the

actual realization of any function mapping. It did,

however, provide the foundation for an important result

directly related to the backpropagation network. Noting the

independent discovery of empirical results that led to the

development of the backpropagation approximation theorem

(Theorem 2 below), Hecht-Nielsen explains the conditions of

its genesis, its guarantee, and its limitation:

Kolmogorov's theorem was the first step.., the back-
propagation neural network is itself able to implement
any function of practical interest to any desired
degree of accuracy...Given a function f : [0 ,1 ] l R7,

we say that f belongs to L. (or "is L2") if each of f's
coordinate functions is square-integrable on the unit
cube. For functions of this class it is assumed that
the x vectors are chosen uniformly in [0,1]" (relaxing
this condition is easy) ...

THEOREM 2 Given any e > 0 and any L2 function f
0, 1] A_ Rm, there exists a three-layer neural network

that can approximate f to within c mean squared error
accuracy....
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...Finally, although the above theorem guarantees the
ability of a multilayer network with the correct
weights to accurately implement any arbitrary L2 func-
tion, it does not comment on whether or not these
weights can be learned using any existing learning law.
That is an open question. (1990:131-133)

2.4.8.4 BackyropaQation Network Generality.

The multi-layer perceptron trained with the backpropagation

learning rule, commonly called the backpropagation neural

network, constitutes an important development in the history

of neural network research:

The backpropagation neural network is one of the most
important historical developments in neurocomputing. It
is a powerful mapping network that has been success-
fully applied to a wide variety of problems ranging
from credit application scoring to image compression.
(Hecht-Nielsen, 1990:124)

Specific examples of its application are accordingly

presented next, in a review of neural network research

literature.

2.5 Previous Neural Network Research

The following review of neural network research

focuses on studies in which the effectiveness of back-

propagation was compared with that of more traditional

approaches, and where fundamental issues of network problem

representation are discussed in detail. The reader should

note that a wealth of literature is available on neural

network research, spanning a vast array of academic

disciplines. In the following review, four essential topics

are covered, one per review. In the work of Fishwick (1989)
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and Orris and Feeser (1990A), traditional analysis

approaches are compared with backpropagation networks.

Lapedes and Farber offer recommendations for network archi-

tecture, and Sanger applies principal component analysis to

the problem of understanding how a 3-layer backpropagation

network solves a problem.

2.5.1 Fishwick (1989). In his study of the behavioral

modeling characteristics of a neural network, Fishwick

compares backpropagation network, linear regression and

surface response methodology techniques. Choosing a

ballistics model for testing, a network (three input nodes,

two hidden layers of 5 nodes each, and one output node) was

constructed to model the horizontal distance traveled (h) by

a projectile, given the initial conditions of angle,

velocity and height. The network was trained for 180,000

iterations and tested by requiring it to predict values of h

for specified initial angle and velocity values (previously

tabulated by applying differential equations of motion).

Fishwick notes

We learned that the neural network was a relatively
poor approximation method given the constraints of our
experiment .... Simple linear regression outperformed a
neural network (with root mean square error (RMSE) of
46.47 versus the neural net's of 70.85). The surface
response method fared even better with a RMSE of 29.19.
(707-708)

An important theme stressed throughout this study lies

in the importance of assessing how much is known about a
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system in order to select an appropriate technique for

modeling:

Even when we appear to have little knowledge about a
system, we usually have enough to assume a basic system
structure (often a canonical form) and then we can
estimate parameters" (709).

In contrast to the more traditional analysis methods,

Fishwick hypothesizes that the primary reason why neural

networks appear to be inadequate is that they do not

"capture the system structure characteristic of all physical

models" (702).

2.5.2 Orris and Feeser (1990A). In their comparison of

neural networks and linear regression analysis, the authors

found that the former produced R2 values almost as good as

those produced by the latter. Three tests were performed

using traditional, simulated, and actual data.

The traditional Longley test data, "...used extensively

for testing the computational accuracy of regression

algorithms since the data has a high degree of multi-

colinearity" (4), was modeled first via regression analysis,

which exhibited a multiple R2 of .99548. The maximum

coefficient of determination attained by a neural network

model of same was .98901. It is noted that the network R
2

values were computed (for all tests in the study) as

follows:

The predicted values were correlated with the target
values and2 the square of this value corresponds to the
multiple R of multiple regression analysis, which is
interpreted as the amount of variance accounted for in
the dependent variable. (3)
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To assess the extent to which a network could detect a

"hidden pattern" in data, a single sample containing

observations representing two distinct relationships (inter-

secting ellipses with positive and negative orientations)

was constructed. The two independent variables were "group"

(a dichotomous variable indicating to which ellipse the

observation belonged) and "X" (a metric x-axis coordinate);

the dependent "Y" variable was a (metric) y-axis coordinate.

The linear regression R2 value was .015 while the network

exhibited a coefficient of determination of .85. The

authors acknowledge that "Since the linear regression line

tries to accommodate the entire data set, the regression

line is almost flat..." (4). The authors report that while

neural networks provided relatively good predictions of the

test data, there was no immediate way to glean an explana-

tion from same for understanding the relative importance of

variables in the model.

In the third and final test, a network was tested using

actual data relating Earnings per Share (EPS), Price/

Earnings Ratio (P/E), Return on Equity (ROE), Sales per

Employee (S/EMP), Growth in Stock Price and Standard

Industry Classification (SIC) Code to an independent

variable measuring corporate environmental responsibility

(5). The network coefficient of determination was .749

compared to .146 for the corresponding regression analysis.

They state
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The results from the actual data indicated the neural
network was accounting for up to four times as much
variability in the dependent variable. The bad news,
from an explanatory point of view, is that we have no
idea why. (6)

In summary, Orris and Feeser state "The main conclusion

is that it appears that neural networks do not appear

especially useful for routine use in exploratory data

analysis" (7).

2.5.3 Lapedes and Farber (1987). In their work on

modeling chaotic time series, Lapedes and Farber report that

"..for certain applications neural networks achieve signifi-

cantly higher numerical accuracy than more conventional

techniques" (1). The authors state

The Glass-Mackey has a strange attractor with fractal
dimension controlled by a constant parameter appearing
in the differential equation. We present results on a
neural network's ability to predict this system at two
values of this parameter, one value corresponding to
the onset of chaos, the other value deeply in the
chaotic regime. We also present the results of more
conventional predictive methods and show that a neural
net is able to achieve significantly better numerical
accuracy. (2)

While a detailed discussion of this experiment is

beyond the scope of this research, Lapedes and Farber

present several additional points regarding network archi-

tecture that suggest a methodological approach, and there-

fore require mention.

A distinction is made between the architectures

required for networks used in symbolic processing and that

required to process floating point (real-valued) inputs and

outputs. In regard to the latter, the authors note
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One does not need more than two hidden layers for
processing real valued input data, and the accuracy of
the approximation is controlled by the number of
neurons per layer, and not the number of layers. We
emphasize that although two layers of hidden neurons
are sufficient they may not be efficient. Multilayer
architectures may provide very efficient networks (in
the sense of number of neurons and number of weights)
that can perform accurately and with minimal cost.
(14)

In the case of symbolic input and output, the authors note

that while it is entirely feasible to model this problem

type with two hidden layers, it is not appropriate for

forecasting new values: "This is an effective method for

memorizing the training set, but a very poor method for

obtaining correct predictions on new input data" (13).

Through a geometric analysis, they conclude that one hidden

layer of neurons is more appropriate for modeling symbolic

relationships (12).

2.5.4 Sanger (1989). Sanger's research focuses on the

inner workings of neural networks, in an attempt to under-

stand how a 3-layer (18 input, 19 hidden, and 21 output

nodes) network solves a particular problem. Using a method

the author entitles contribution analysis for "deriving the

responsibilities of individual hidden neurons in imple-

menting the input-output mapping" (115), Sanger investigates

a scaled-down version of the NETtalk neural network, which

"...learns to convert written English text to the corre-

sponding spoken English phonemes" (116).

Sanger defines contribution as follows:
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For a specific input presentation, a specific hidden
unit, and a specific output unit, the contribution is
defined as the product of the hidden unit's activation
when the net is presented with the specified input and
the weight from the hidden unit to the output unit.
There is a distinct contribution for each combination
of input presentation, hidden unit and output unit.
(116)

The network is trained by presenting two-letter combi-

nations to the net together with the correct phoneme (only

two input nodes and one output node are "on" (set to 1

instead of 0) in a given training example (presentation)).

Sanger then analyzes the distribution of contributions

produced by each output and hidden unit, via principal

component analysis. With respect to output units, "... the

principal components represent patterns of hidden units that

are responsible for activating the specific output unit...",

while for each hidden unit "...the principal components

represent the patterns of output units that the specific

hidden unit is responsible for..." (120).

For collective hidden node responsibilities, it is

noted that a small number of hidden units usually contribute

strongly to exception processing (rare input-output combina-

tions), that membership in hidden unit patterns is well-

defined (for input-output relationships recurring often),

and that "..the net learns which output units can be handled

identically and thus consolidates the responsibility for

identical units" (122).

Individual hidden unit responsibility analysis reveals

that "a strong dichotomy exists between units that are
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responsible for vowels and those that are responsible for

consonants", and "the net appears to allocate more resources

toward learning exceptions than toward learning [general]

rules" (125).

Finally, Sanger experiments with the number of nodes

comprising the hidden layer and summarizes his findings by

succinctly noting "as hidden nodes are added to a net, the

proportion of superfluous units increases" (128).

2.5.5 Research Literature Summary. The work of

Fishwick suggests that it is critical to assess how much is

known about a problem before one selects an appropriate

modeling technique, and that it appears that networks cannot

represent system structure characteristics of physical

systems. Orris and Feeser's research suggests that networks

may be very good predictors, but divulge little about

variable significance. Lapedes and Farber note that for

their research, a neural network was a superior time-series

predictor, while Sanger suggests that it is possible to

understand how a network works via principal component

analysis.

Thus, the analysis of neural network applicability

appears to be highly problem specific, suggesting that much

additional research is required for understanding how to

accurately represent and analyze a problem. The methodology

for the problem under analysis in this research is presented

next in Chapter III; it defines an experiment designed to
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assess network predictive accuracy in comparison with that

of multiple linear regression models. Subsequently, the

presentation of the analysis and findings is presented in

Chapter IV.
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III. MethodoloQy

Methodoloiv Overview

This research fits twelve backpropagation neural

network metamodels to attack and no-attack scenario data

representing the first six days of a one month time period

as previously generated by Diener via simulation (1989). A

neural network metamodel and a fully specified linear

regression counterpart are fitted to each daily sample, for

each of the twelve days under study, and compared on the

basis of predictive accuracy. The fully specified (two-way

interaction) regression metamodels are not offered as the

product of an attempt to determine the best linear model

(via PRESS residuals, C(p)-Mallows statistics, etc.).

Likewise, the neural networks are basic 3-layer (input,

hidden, output) backpropagation models that are conserva-

tively built, trained and tested; advanced network tech-

niques (training with noise, synapse pruning, multiple

hidden layers, etc.) are intentionally avoided in this

research in an attempt to create fundamentally basic and

identically constructed neural networks for comparison with

their regression counterparts. While the focus of this

research is indeed prediction, the point in comparing

unaltered and basic models in lieu of models specifically

selected for their predictive capabilities lies in the

attempt to more fully understand the fundamental differences
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between the prediction methods. An additional rationale for

this limitation lies in the desire to explore the extent to

which a 3-layer neural network can accurately forecast

sorties flown solely on the basis of ten input variables

(resource factors set at "low" and "high" indicators

represented as 0 and 1 respectively), in comparison to

regression.

Predictive accuracy is assessed for both model types

(regression and network) via the use of an independent

testing sample not used in the model fitting process. The

fitting (or training) and testing samples contain 128 and 20

observations, respectively. Predictive accuracy is assessed

via Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), and other measures. Test results are summarized and

interpreted in Chapter IV.

3.1 Sample Considerations

3.1.1 Simulated Data. All neural network and

regression metamodels examined in this research are

developed and analyzed via simulated data samples. While

the requirement to use simulated data is largely inherited

due to the fact that this research is a follow-on study of

specific aspects previously noted and examined in Diener's

research (1989), certain points regarding the use of

simulated in lieu of "live" data require mention.

In comparison with the obviously impractical idea of

interrupting air base operations to study the effects of
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policy changes on sortie generations, simulation offers a

viable alternative. However, to appropriately assess the

use of simulation for data generation, one must first

possess a generally clear notion of what simulation entails:

Simulation is a form of modeling whose purpose is
usually comprehension, planning, prediction, and
manipulation. It can be defined broadly as a behavioral
or phenomenological approach to modeling; that is, a
simulation is an active, behavioral analog of its
referent. The essence of simulation is that it unfolds
over time. It models sequences and (possibly) timings
of events in the real world. Simulation is a process in
which a model of any kind is used to imitate (some
aspect of) the behavior of its referent. It denotes an
action (process) rather than a thing.
(Rothenberg, 1989:8)

Simulation can thus be characterized as a process model

that attempts to capture specific aspects of the temporally-

based behavior of its referent. For this research, the

referent is an F-15 air base, the process being modeled is

that of sortie generation, and the specific behavioral

aspect under study is the dynamic relationship between

resource factors and sorties flown--the inputs and outputs

to the process being modeled--as it unfolds throughout the

first six days of a thirty day simulation period previously

studied by Diener (1989).

In regard to assessing the quality of a simulation

model, the concepts of verification and validation are

fundamental. Verification is primarily a measure of the

system's ability to perform according to a specification

(often a software design); while validation entails a much

broader and often exceedingly complex range of
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considerations. While the reader is referred to the

literature for in-depth treatment of the issue of

validation, two fundamental concerns are assessing the

extent to which the simulation is isomorphic to real-world

conditions, and determining its level of credibility among

the consumers of its products. For this study, the latter

concern is largely answered in terms of the utility of TSAR

and TSARINA to researchers investigating the behavior of

large-scale systems. In regard to the former, it is noted

that any serious systems modeling tool undergoes a process

of evolutionary improvement, and that model validation, in

this case, falls under the purview of the RAND corporation.

On the basis of the intrinsic value of TSAR and TSARINA for

large-scale systems investigation and its use in previous

research (notably in Diener (1989)), it is argued that the

simulation model is sufficiently reliable for data sample

generation.

3.1.2 Randomness and Representativeness. The issue of

the representativeness of Diener's (1989) samples (used for

model fitting) is addressed by noting that the original

treatment selections comprising the sample are contingent

upon the fractional factorial design construction process

selected by Diener (1989) (as previously noted, the specific

treatments comprising each sample used for fitting are

listed in McLean and Anderson in fractional factorial design

plan 8.10.16 (1984:255-256)). The experiment performed in

83



this study assumes that the sample observations are real-

world "control-group" data--not estimates of the expected

values of same, and that the orthogonal properties of the

fractional design employed ensure balance of representation

of each main effect via internal factor replication implicit

in the construction of the design matrix itself (internal

replication is not to be confused with the replication of

treatments). Thus it is assumed that the plan employed

produces samples representative of the underlying population

probability distribution to the extent that significant main

effects and two-way interactions existing in the population

can be readily detected from the generated samples.

The representativeness of testing samples is also

addressed in terms of Diener's (1989) experimental design:

each randomly selected testing treatment is first assigned a

randomly generated block number, where the set of block

numbers employed consists of only those previously used in

the original (fitting) sample generation process (from the

experimental design employed by Diener). The block assign-

ments control which random number streams are used, thus the

introduction of "new" randomness (in comparison with the

training samples) is restricted. The simulation (TSAR/

TSARINA) generates twenty response values for the treatments

selected for testing.

To sum: with respect to the control of the impact of

model variance on response values (sorties flown), both
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fitting and testing samples are subjected to the original

variance reduction technique (VRT) previously employed by

Diener (1989) to ensure that initial experimental conditions

are not violated.

3.2 Multiple Linear Regression Metamodel Methodology

The regression metamodels used in this research are

fully specified, including terms for each of the 10 indepen-

dent variables, all possible two-way interactions of same,

with no blocking term. The metamodel form for both the no-

attack and attack scenarios is essentially given by Eqs

(2.4) and (2.5), respectively. As stated above, no attempt

is made to reduce the full model given by those forms (via

variable elimination techniques), as the intent is to

compare the empirical behavior of two different modeling

methods. Diener's (1989) original methodology uses backward

elimination to reduce the number of independent variables

present in the attempt to identify those models with high

explanatory capability. As previously noted, there is a

fundamental difference between selecting models on the basis

of explanatory capability (in terms of how well they fit a

given sample), and selecting models exhibiting the best a

priori predictive potential (see 2.3.6). Thus, Diener's

reduced metamodels (1989), selected for their explanatory

capabilities, are not used for the comparisons performed in

this follow-on study. Further, as the focus of this

research is prediction comparison, the regression metamodels

85



and their network counterparts are left unaltered to

facilitate exploration of the their fundamental differences

in predictive performance.

All regression metamodels are developed using the

Statistical Analysis System (SAS) software running on a

VAX/VMS Minicomputer hardware platform. For testing, each

model is required to predict sorties flown values for each

observation contained in each (daily) testing sample.

3.3 Network Metamodeling Methodology

The success or failure of backpropagation neural

network applications is highly contingent upon several

empirical factors. Considerations that must be taken into

account include the number of hidden layers used, the

possibility that the network may be overtrained and/or

overspecified (both hamper predictive capability or

"generalization"), the effects of different initial random

weight settings, and the possibility that the gradient

search may become trapped in a local minimum existing in the

error surface (and thus not "find" the global minimum error)

(Hecht-Nielsen, 1990:115-119, 128-131). Such factors are

application-specific. Accordingly, the initial conditions

of the experiment are reviewed next.

3.3.1 Network Modeling Environment. All neural network

metamodels analyzed in this research are developed using

BrainMaker Professional, Version 2.13, a commercial computer

software package designed and developed by California
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Scientific Software (California Scientific Software, 1990;

California Scientific Software Technical Support, 1991;

Lawerence and Lawerence, 1990). With respect to hardware,

all neural network models are trained and tested on an IBM-

PS2 compatible personal computer configured with an 80386/-

80387 chip set rated at 25 MegaHertz.

3.3.2 Network Architecture. The architecture used in

every neural network model in this research is limited to

the input layer, a single hidden layer, and the output

layer: An input layer of 10 nodes represents nine resource

factors and the environmental variable of aircraft attrition

(the independent variables) (see Tables 2.1 and 2.2), one-

output node represents the response variable sorties flown

(the dependent variable), and an empirically determined

number of hidden nodes comprises the hidden layer (which is

determined by adjusting their number to allow the network to

learn the fitting/training set to within a pre-specified

error tolerance measure). A model is developed for each of

the twelve days under analysis (the first six days of both

Attack and No-Attack Scenarios).

3.3.2.1 Initial Design. The careful reader will

note that neither the regression metamodels nor the networks

contain a blocking term. The ommission in the network case

is prompted for the following reasons:

1. At the general level, we desire to see how well the

networks fare in capturing the input/output mapping via a
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simple and intuitive modeling approach (10 resource and

policy factors as input, 1 sorties flown response variable

output).

2. The most immediate way to represent blocking to the

networks seems to require the addition of eight additional

input nodes (a binary string of length eight), which

increases the size of the input vector to eighteen

components. The number of hidden nodes in a (one hidden

layer) network "drives" the number of weights (synaptic

connections) multiplicatively, thus there is a greatly

increased potential for the network to become overspecified

in. relation to the size of the training samples-(in network

modeling terms, the number of weights or free parameters in

the network may quickly exceed the number of training

examples (128 per daily metamodel)).

While the issue of model overspecification is more

directly addressed in 3.3.2.2 below, consider the following

brief example: given 18 in and 1 out, a possible hidden

layer consisting of 5 hidden nodes would create a network

containing 114 weights: 18*5 + 18 (bias connections) = 108

connections from input to hidden layers, 5*1 + 1 (bias) = 6

from hidden to output layers, for a total of 114 (simply

108+6). Comparing the size of this possible representation

(18 inputs) to the number of weights a 10-input network

would generate (at 5 hidden nodes the network would contain

61 weights) suggests that the number of free parameters
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(weights) in the large network may grow too large in terms

of an initial design decision, hence the i0-?-l architecture

is selected for preliminary investigation (where ? denotes

an as-of-yet unspecified number of hidden nodes) over the

18-?-1 model.

The need for this design conservatism is further

amplified when considering that each model's training

(fitting) sample contains only 128 observations, and,

similar to regression, the danger of overfitting the model

via the inclusion of an excess number of free parameters

(weights for networks, beta coefficients for regression) is

a real one.

3. As an ancillary research question, it is desirable

to investigate the effect the blocking variable has on

response forecasting. In the event that neither metamodel

type does well at predicting the testing samples, the

preliminary conclusion would appear to be that the

representation of blocking is important for controlling

response variance (regardless of metamodel type). If nets

fare well but regression does not, the implication may be

that a neural network modeling technique may compensate for

the ommission of the blocking term via specific modeling

properties. By ommitting the blocking variable from the

metatmodels, the opportunity exists to explore this research

issue.
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3.3.2.2 Hidden Layer Nodes. Determining the

required number of hidden layer nodes for effective

input/output mapping is often a non-trivial task (it is

essentially an attempt to find an appropriate model archi-

tecture specification for the problem at hand). It is

possible to over/under-specify the network model in a manner

analogous to regression model specification. If too few

hidden nodes are used, the possibility exists the network

either will not converge or sufficiently learn enough of the

underlying problem structure to generalize (predict) well;

if too many hidden nodes are employed the network may

"memorize" the training set and exhibit "look-up table"

characteristics, with prediction inaccuracy a probable

consequence.

As the weights (synaptic connections) of a network are

its independent variables (or, equivalently, the free

parameters of the gradient descent technique employed to

determine the minimum fitting error), caution must be

exercised to ensure that the number of training examples

exceeds their total number. With regard to the relationship

between the number of weights in a network and generaliza-

tion capability, Hertz et al. note

Another important lesson about generalization can be
learned from statistics and curve-fitting; too many
free parameters results in overfitting .... a curve
fitted with too many parameters follows all the small
details or noise but is very poor for interpolation or
extrapolation [prediction]. The same is true for neural
networks: too many weights in a network give poor
generalization. (1991:147)
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Although a definitive formula for calculating the correct

number of weights for a specific application remains an

issue for research (Rogers et al., 1991:64-65), it has been

recommended that the number of training examples should be

between 2 and 10 times the total number of nodes (neurons)

contained in the network--as a practical rule of thumb

(California Scientific Software, 1991).

The reader is cautioned with regard to directly

comparing the number of independent variables in a network

topology with same for a regression model or non-linear

equation matrix form as the primary focus of much of neural

network research entails pattern recognition/learning in a

data-driven environment in lieu of statistically precise

mathematical forecasting methods such as regression. The

calculation of future values (prediction) in the traditional

mathematical sense (especially via regression) is a

thoroughly researched field with well-defined and robust

procedures, while in the case of neural networks, research

remains highly empirical. The difference, in theoretical

terms, entails comparing Kolmogorov's technique for approxi-

mating continuous functions with a Taylor's polynomial

approximation for same. It is far from impossible that the

number of independent variables or nodes may be larger or

smaller than suggested by the guidelines noted above,

depending on the type of network, representation complexity,

sample size constraints, etc. In this research the number
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of nodes (and therefore the number of independent weight

variables) is determined by limiting the network topology to

1 hidden layer and empirically testing whether or not the

network will converge or reach a pre-specified error

tolerance at different numbers of hidden neurons.

3.3.2.3 Synaptic Connectivity. With respect to

synaptic connectivity, each network model is feedforward in

design, as depicted in Figure 3.1. Hertz et al. provide a

clear description of this form of network architecture:

There is a set of input terminals whose only role is to
feed input patterns into the rest of the network. After
this come one or more intermediate layers of units,
followed by a final output layer where the result of
the computation is read off .... there are no connections
leading from a unit to units in the previous layers,
nor to units in the same layer, nor to units more than
one layer ahead. Every unit (or input) feeds only to
the units in the next layer. The units in the inter-
mediate layers are often called hidden units because
they have no direct connection to the outside world,
neither input nor output. (1991:90)

In terms of Figure 3.1, each node in a given layer is

connected (by synapses) to every node contained in the layer

immediately above it, no connectivity between nodes

occupying the same layer is permitted, and no node (for

example, in layer j) may be vertically connected to a node

existing in a layer other than the one immediately above

(k). For this research, this choice of architecture, a

basic 3-layer feedforward neural network employing the

backpropagation learning rule) is, in part, inspired by

Hecht-Nielsen's backpropagation approximation theorem cited

in 2.4.8.3.
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Figure 3.1 Feedforward Network
Pao, 1989:121

The feedforward architectlral form is stable in that it

is not subject to feedback oscillation between nodes or

layers, which feedback (or recurrent) neural networks

exhibit or deliberately model (for the purpose of inducing

simulated annealing, adaptive resonance, etc.). The reader

should note that the backpropagation training algorithm uses

forward and backward passes to compute outputs and adjust

weights based on computed error (see 2.8.4), respectively,

which is not at all equivalent to inducing feedback between

nodes/layers in the attempt to force the network reach an

energy minimum (which is essentially a different training

technique). For additional information on feedback and

other alternative architectures and training methods, the
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reader is referred to Hecht-Nielsen (1990), Stanley (1990),

and Hertz et al. (1991).

3.3.3 Hidden Layers. The number of hidden layers

required to accommodate the effective learning of input-

output mappings, while empirical, entails the notion of

input transformation: as input signals propagate through

successive layers in the network, they are transformed into

patterns that are hyperplane-separable and therefore

amenable to network classification (see 2.4.8). As

previously noted (2.5.3), binary networks (binary inputs and

outputs) appear to generalize best when only one hidden

layer is used, while it is (theoretically) possible to model

most all continuous-valued problems with two hidden layers.

In the interest of exploratory research and on the basis of

the Hecht-Nielsen's backpropagation theorem (2.4.8.3), this

study limits the number of hidden layers (for any network

developed herein) to one.

3.3.4 Network Learning Rule. The backpropagation of

errors learning rule is emplo:-ed to train all network models

developed in this research. The specific form of the

learning algorithm used in this research, implemented in the

Brainmaker Professional software (1990), is discussed by

Stanley as follows.

Basically training consists of running patterns through
the network forwards, then propagating the errors
backwards, and updating the weights according to the
equation

Dp = T(OpiOp )  (3.1)
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where n is known as the "learning rate". In
Brainmaker's actual implementation, we use a version of
the rule used by Sejnowski and Rosenberg in their
NetTalk application, whereby

DpWij = 7((1-A)6piOpj + Dp-lWjj)  (3.2)

Here, g is another parameter known as a "smoothing
factor". It improves convergence [a gradient descent
search for the global minimum] somewhat, but even if g
is set to 0, the algorithm will still converge [if a
solution exists], although it will take slightly
longer. (1990:241)

This research uses the learning algorithm listed above as

Eq(3.2). As discussed by Stanley (1990:237-242), the

components of Eq(3.2) are defined as

DpWij= the change in weight Wj on pattern p,

6pi = -(aEp1/a0~p)Opj (see 2.4.7 and 2.4.8.2),

Opj = the output of neuron j on pattern p,

7 = the learning rate, and

i = the smoothing factor (or momentum term].

In their discussion of momentum terms, Hertz et al. note

...gradient descent can be very slow if n is too small,
and can oscillate wildly if n is too large...The idea
is to give each connection w. some inertia or
momentum, so that it tends to change in the direction
of the average downhill "force" that it feels, instead
of oscillating wildly with every little kick. Then the
effective learning rate can be made larger without
divergent oscillations occurring .... the addition of a
momentum term [Plaut et al., 1986], is often effective
and is very commonly used...a value of 0.9 is often
chosen. (1991:123)

The momentum term referred to is essentially the same entity

as the smoothing factor use in Brainmaker, shown in Eq(3.2).
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For this research, the smoothing factor (or, equivalantly,

momentum rate) is left unaltered at A=.9, to take advantage

of its beneficial effects on higher rates of learning (for

this research, at q=l and .5).

3.3.5 Transfer Function. The transfer functions (TFs)

used in all networks developed this research are sigmoidal

in form. As implemented in Brainmaker Professional

(California Scientific Software, 1990), it is given by

Stanley (1990:242) as

TF(A) = ((High-Low)/(l+exp(-Gain*(A-Center)))] + Low (3.3)

where A represents the activation value of the neuron or

node under consideration (see 2.4.3 for a description of

symbolic neuron anatomy, including transfer functions).

Further, Stanley notes (1990:242-243)

If we set High to 1, Low to 0, Gain to 1, and Center to
0, this reduces to the form used by Rumelhart:

TF(A)=i/(l+exp(-A)) (3.4)

This study utilizes the transfer function defined in

Eq(3.4). It should be noted that sigmoidal transfer func-

tions are used only in the hidden layer nodes--input and

output nodes yield linear output values.

3.3.6 Network Parameters. Following the recommenda-

tions of Orris and Feeser (1990A, 1990B), the parameters

used in training the neural network metamodels are

specifically listed as follows.
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1. Error Tolerance. Training ceases when network

training converges to within ±.05 error between the network

estimate and actual value of the response variable sorties

flown. The number is chosen, prima facie, on the grounds

that a forecasting method that can consistently predict

within this error tolerance is a relatively superior method.

It must be understood from the outset that the error

tolerance used here is not equivalent to the Mean Squared

Error (MSE) previously discussed in Hecht-Neilsen's theorem.

Rather, it represents the ± error percentage of the output

values derived by the network in comparison with those

contained in the patterns of the training set.

2. Learning Rate and Smoothing Factor. As a staring

point, the Brainmaker Professional (California Scientific

Software, 1990) software default values of q=1.0 and g=.9

are used for the learning rate and smoothing factor, respec-

tively. These values were originally determined through

empirical testing during software development, and have been

successfully employed in a variety of applications

(California Scientific Software Technical Support, 1991).

In the event that convergence to within a pre-specified

error tolerance does not occur, a plausible recommendation

is to lower the learning rate to allow weight updates

smaller in magnitude than those at higher learning rates

(Lawrence and Lawrence, 1990:5-25), and retrain. Here, the

alternate learning rate is initially set at n=.5 (in the
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event convergence to within a pre-specified error level does

not occur due to gradient descent error oscillation). As

previously noted in 3.3.4, the smoothing factor is left

unaltered. 3. Minimum and Maximum Range Values. The

modeling software used in this study automatically computes

minimum and maximum values for all input and output nodes by

calculating the values lying two standard deviations from

the mean for each input and output vector in the training

(fitting) set. By default, sample values above and below

these computed values are "clipped", i.e., outlying sample

values are taken to be equal to the applicable (computed)

minimum or maximum, perhaps indicating a primary orientation

toward pattern classification over generalized function

mapping with respect to Brainmaker Professional software

functionality. For this research, the sole concern is

compromising (due to "clipping") the sorties flown output

values (since all input values are equal to 0 or 1). The

need to predict accurately across all the entire output

range of sorties flown is critical. The default minimum and

maximum values are manually reset to those that exist in the

training sample response range, in the attempt to create a

more representative test of predictive capability.

3.3.7 Architecture Determination Procedure. To

facilitate comparative analysis (particularly across days),

it appears desirable to create neural network metamodels

possessing identical architectures. A fundamental concern
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in much of neural network research is determining the number

of hidden layers required to represent a problem. A single

hidden layer connecting 10 inputs to 1 output is chosen in

the interest of maintaining a conservative research

approach. Given this, an equally critical factor lies in

determining the number of hidden nodes required for

representing the problem under study. This number is

determined as follows.

1. Using Hecht-Nielsen's backpropagation theorem (see

2.4.8.3) as a starting point, each network is tested at 21

hidden nodes (this number equals twice the number of input

nodes plus one). All networks are tested at this number for

convergence to a (preliminary) selected error tolerance of

±.l.

2. On the advice of Dr. Kenneth Melendez (1991), this

number (of hidden nodes) should be gradually reduced to

prevent rote memorization of the training set and super-

fluous hidden nodes. Here, they are reduced one by one

until the network under analysis will no longer attain the

desired error tolerance (±.l). We note this attempt to find

the minimum number of hidden nodes required for problem

representation appears consistent with the observations of

Hertz et al. (1991) (see 3.3.2.2 above), regarding model

overspecification.

3. To ensure that no smaller number of hidden nodes

will adequately represent the problem, the test is performed
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in reverse, starting with 1 hidden node, incrementing this

number by 1, and again stopping when the network in question

converges to the error tolerance of ±.1.

4. The number of hidden nodes to be used for every

metamodel in this study is established by using the largest

number resulting from steps 2 and 3 above (the largest

minimum number of hidden nodes required to reach the ±.1

error tolerance exhibited by any network metamodel of the 12

under analysis). In this way, all networks possess

identical architectures, presumably rendering them amenable

to exploratory analysis and comparison across days.

3.3.8 Network Training Procedure. The procedure used

in training each neural network metamodel is listed as

follows.

1. Each model's architecture is identically specified,

as determined by the procedure discussed above.

2. Using the determined architecture specification,

training is reinitialized (started anew) and the networks

iteratively learn the pattern set (the training sample

presented to allow weight modification) until convergence is

gradually attained at ±.10, .08, .06, and, finally, .05

error tolerance levels. In the event that a given metamodel

consistently fails to converge at one of the pre-determined

tolerance levels after 10,000 iterations, the learning rate

is set to .5 (7=.5) and training is reinitialized.
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3. If convergence is not attained at the current error

tolerance level after lowering the learning rate and

allowing the network train for a maximum of 10,000

additional iterations at the current tolerance level,

training is terminated. The rationale for training the

networks beyond an encountered difficulty with convergence

lies in the idea of providing an additional "margin" in

which the network may learn more of the training set prior

to (prediction) testing.

3.3.9 Summary. Two metamodel sets are formulated for

analysis. The first contains 12 backpropagation neural

networks modeling the first six days of the Attack and No-

Attack Scenarios, while the second models precisely the same

days and consists of fully specified regression models. The

models are specified and trained/fitted as discussed above;

goodness-of-fit and predictive accuracy are analyzed in

terms of the following procedures.

3.4 Metamodel Evaluation

The following section delineates the three types of

statistical measures used in this study for assessing model

fit and predictive accuracy--measures of association,

forecasting accuracy, and statistical significance.

3.4.1. Measures of Association (McClave and Benson,

1988:979-983). The degree of association between the

control data provided by the simulation and that generated

by the metamodel fits/forecasts (regression and network
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metamodels) is indicative of metamodel goodness-of-fit/

forecasting accuracy. This type of measure has been used

previously in exploratory neural network research (Orris and

Feeser, 1990A and 1990B). This study uses a nonparametric

alternative, Spearman's Rank-Order Correlation Coefficient,

r8, which provides a measure of closeness or strength

between actual data (simulated) values and a set of fitted

or forecasted values for same. This method of measuring

association is used as it cannot be assumed two given

samples under analysis (actual versus forecast, paired by

treatment) are drawn from the same underlying bivariate

normal population: each simulation design point (treatment)

possess its own distribution that has not been estimated via

replication, hence Pearson's Product Moment Correlation

Coefficient is inappropriate. Siegel and Castellan (1988:2-

44) note that Spearman's rs has an efficiency of about 91%

in comparison with Pearson's r.

Spearman's rank correlation coefficient is given by

McClave and Benson (1989:979- 983) as

rs = SS" / (SSUJSSW)1 2

where

SSt = uiv i - ( u vi)/n
SS = u2

1 - 1 )/
SSt = u 2 2

SSV = v 2 (j Vj) 2/n

and
ui = Rank of the ith measurement in sample 1
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vi = Rank of the ith measurement in sample 2

n = Number of pairs of measurements (number of
in each sample.

The associated one-tailed test of statistical signifi-

cance is given by

HO: Q = 0

Ha: Q > 0 (the correlation is positive)

Test Statistic: rs, the sample rank correlation.

Rejection Region: rs > rs,

3.4.2 Measures of Forecast Accuracy. Predictive

accuracy is measured in terms of several statistics.

Measures 1-6 listed below will be found in Makridakis et al.

(1983:44-54); the reader is directed to that reference for

full treatment, as well as to Armstrong (1978:319-333) for

additional information. Each fundamentally analyzes error,

where the forecasting error for a given observation is

understood as ei = Xi - F, (Makridakis et al., 1983:44),

i.e., each error ei is simply equal to the difference

between the actual value X, and the forecasted value F,.

(Throughout this section, the index i ranges from 1 to n,

where n represents the total number of observations).

We focus upon Mean Error (ME) to indicate metamodel

bias, Mean Absolute Error (also known as Mean Absolute

Deviation) and Root Mean Squared Error (RMSE) measures to

assess each model's relative forecasting accuracy, and the

Adjusted Mean Absolute Percentage Error (AMAPE) for
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comparing metamodel forecasting accuracy across days. The

AMAPE is selected due to its resilience to data measurement

errors (Armstrong, 1978:322), a potential difficulty here in

that each treatment response possesses its own (unknown)

probability distribution. The measures are collectively

defined as follows.

1. Mean Error (ME).

ME = e, / n
i

2. Sum of Squared Errors (SSE).

SSE = e 2i
i

3. Mean Squared Error (MSE).

MSE = SSE / n

4. Root Mean Squared Error.

MSE1 / 2

5. Mean Absolute Error (MAE), (or Mean Absolute

Deviation (MAD)).

MAE = 'eil / n
i

6. Standard Deviation of Errors (SDE).

SDE = (SSE / (n-1)) 1/2

7. Adjusted Mean Absolute Percentage Error (AMAPE)

(Armstrong, 1978:322).

AMAPE = Z (e / (Xi+Fi)/2) / ni

8. Error Range and Minimum Error. Maximum errors

exist in both positive and negative directions, hence both
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are recorded to reveal range. The minimum error is recorded

as that value which is closest to 0 in terms of absolute

value.

3.4.3 Measures of Statistical Significance. Two tests

of significance are selected for determining whether fore-

casts are significantly different from simulated sorties

flown values (the control groups) by way of differences

paired by treatment. Prior to application of either, we

analyze each set of sample differences for normality by way

of the Wilk-Shapiro test. In the event that conditions of

normality do not obtain for a given sample of differences, a

non-parametric difference test is employed. The paired

difference tests used in this research are listed as

follows.

1. Two-Tailed Paired Difference Test of Hypothesis

(Parametric) (McClave and Benson, 1988:454).

Ho: (91 - 42) = Do

Ha: (Al - 92) * Do

Test Statistic: t = - o

1/2
sD / 1

Rejection Region: t < -t,/ 2 or t > ta/2

where

ta/2 has (nD - 1) df (degrees of freedom).

2. Wilcoxon Signed Rank Test (Nonparametric) (McClave

and Benson, 1988:959).
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HO: Two sampled populations have identical probability
distributions.

Ha: The probability distribution for population A is
shifted to the right or to the left of that for
population B.

Test Statistic: T, the smaller of the positive and
negative rank sums, T, and T..

Rejection Region: T : To.

3.5 Limitations and Metamodel RelationshiDs

3.5.1 Limitations. Several factors limiting the

potential predictive accuracy of both metamodel types must

be noted as follows:

1. Sample size. For many applications, neural

networks are trained on samples containing thousands of

observations. Each network developed in this research is

trained on a sample size of 128. Similar considerations

regarding sample size adequacy (thus representativeness)

apply for regression as well, but perhaps not to the same

degree due to the robustness of the technique. It is noted

that networks may not represent sufficiently the problem at

a level when the number of weights (as determined by the

number of hidden nodes) is greater than the number of

observations contained in the sample and if sample sizes are

too small in general.

2. Mapping dichotomous (binary) input vectors to a

real-valued output. The observations comprising both the

training and testing samples used in this research consist

of an input vector whose 10 scalar components may take on

106



only values of 0 or 1, while the output value is an integer

count of sorties flown (ranging roughly in value from 6 to

an upper limit of 300). The possibility exists that real-

valued inputs may yield a better problem representation from

the networks under study than those used in this research;

it is certain that larger samples are desirable. While not

available for the network or regression metamodel fitting

process in this research, such data may, (given sufficiently

large samples), provide better representations from which to

model, especially with respect to generalization

(prediction) capabilities.

3. Neural Network Architecture. In essence, this

problem is a hybrid of symbolic and real-valued (integer

count) representation. As previously noted in the litera-

ture review (see 2.5.3), real-valued function mappings often

require two or more hidden layers, while symbolic mappings

often predict most effectively via a single hidden layer.

In the interest of conservatism, a single hidden layer

representation is selected for this research, but the possi-

bility remains that additional hidden layers may be appro-

priate for the problem under consideration, especially if

used in conjunction with real-valued training sets. The

difference essentially entails using a neural network to

model the training set in terms of a hypercube or multi-

dimensional surface, depending on whether one hidden layer

or two (or more) are used, respectively.
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4. Neural Network Learning Rates. Learning rates are

critical (see Eqs (3.1) and (3.2)) in any network repre-

sentation research. It should be stressed that the effect

of different learning rates on a specified network topology

constitutes an entire research area, not simply an empirical

consideration. As previously justified in 3.3.5, the

learning rate is fixed at 1, unless the network fails to

converge (exhibits oscillatory behavior).

Thus, the "learning" equation used in this research

stated above as Eq (3.2) reduces to

DpWij = (1-g) (6 pip) + A(Dp 1Wij) (3.5)

when the learning rate is set to 1 (q=i). It is noted that

this may be far from optimal for an initial setting (depend-

ing on problem characteristics), and may require alteration

during the training process--particulary if the network in

training exhibits oscillation in attempting to settle to the

pre-specified error tolerance.

3.5.2 Metamodel Relationships. The tests performed in

this research entail comparing the performance of a linear

method to a non-linear one. Hecht-Nielsen notes the

following regarding the relationship between the two

modeling techniques chosen for evaluation in this research:

The manner in which mapping networks approximate func-
tions can be thought of as a generalization of
statistical regression analysis. In regression, the
specific form of a function to be fitted is first
chosen and then fitted according to some error
criterion (such as the mean squared error). This
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procedure is, at its core, based upon the least mean of
squared errors (or simply least squares) technique for
fitting a straight line to irregular data invented
almost 200 years ago by Carl Gauss...A primary
advantage of mapping networks over classical
statistical regression analysis is that neural networks
have more general functional forms than the well
developed statistical methods can deal with. (1990:120)

In essence, the point of this research is to analyze and

interpret the extent to which neural network models are or

are not superior to multiple linear regression for predict-

ing sorties flown for each scenario day under study, subject

to the methodological constraints and recognized limitations

noted above.
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IV. Analysis and FindinQs

uverview

This chapter presents the analysis and findings of a

comparison of regression and neural network metamodels

fitted to simulated data previously generated by Diener

(1989). A neural network metamodel and a fully specified

linear regression counterpart are fitted to each daily

sample of the twelve days under study (the first six days of

Attack and No-Attack Scenarios), and subsequently compared

on the basis of strength of correlation between fitted/

forecast and actual values, measures of forecasting error,

and statistical significance between forecast and actual

values.

The Chapter is organized in five Sections. In Section

1, we evaluate the network architecture determination and

training process. Section 2 presents the measures of

association used for assessing the degree of correspondence

between fitted/forecast and actual (simulated) values

(stated in 3.4.1), and provides commentary on the

significance of these measures. Section 3 reports the erlor

statistics measuring relative and comparative forecasting

accuracy of the two methods (3.4.2), while Section 4

presents the statistical results regarding the detection of

significant differences between actual (simulated) and

forecasted sorties flown response values (3.4.3). Finally,
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Section 5 provides a summary of the analyses conducted in

this chapter and reviews the significant findings

discovered. The thesis ends with general research

conclusions and recommendations for future research, which

jointly comprise Chapter 5.

4.1 Network Architecture and Training

4.1.1 Architecture Determination. Following the

methodology of 3.3.7, the minimum number of hidden nodes

required for the set of 12 networks under study to reach

convergence at the preliminary ±.1 error tolerance level is

determined to be 14. Accordingly, each network to be

trained to the final ±.05 error tolerance level possesses a

10-14-1 architectr:re, and the number of free parameters

(weights) fitted by the gradient descent error minimization

procedure operative during the training process is thus 169

((10*14 + 14) + (14*1 + 1) = 169). It is noted that this

number (169) exceeds the number of observations present in

each daily training sample (128) (see 3.3.2.2), but never-

theless appears to be required for efficient function

mapping during network training (subsequent statistical

analyses will reveal the extent to which the architecture is

effective for the purpose of prediction). In contrast to

this guideline, the number of observations present in each

training sample (128) exceeds the total number of nodes in

each network (at 14) by a factor of approximately 9, which

meets the suggested practice that the number of observations
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exceed the number of nodes by a factor of at least 2-10

(3.3.2.2).

The number of hidden nodes required to meet the prelim-

inary error tolerance level of ±.1 is illustrated in Figure

4.1. Beginning with one hidden node and successively
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Figure 4.1 Hidden Nodes Required for ±.1 Error Tolerance

increasing their number by one (3.3.7), seven of the net-

works failed to reach the preliminary tolerance level until

14 hidden nodes were employed (at a learning rate of n=1.0

and smoothing factor of g=.9 ). The process was repeated in

reverse, beginning with twenty one hidden nodes (3.3.7) and

reducing their number by one until the networks did not

converge to the preliminary error tolerance level (±.1),

with identical results (using the same learning and
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smoothing rates). The sole exception proved to be the

network for Attack Scenario Day 3, which did not converge

until the learning rate was lowered, noted in 4.1.2 below

(14 hidden nodes were required for this network as well).

While five of twelve networks converged at lower hidden

node levels (fewer than 14), the initial design decision to

configure all networks with identical architectures to

facilitate their comparison with regression counterparts

requires the use of 14 (hidden nodes) for each:

1. All networks are constructed with identical archi-

tectures in the attempt to ensure they are fully-specified

-and not optimized for fitting or forecasting via pruning,

training with noise, etc., to provide a fair comparison with

their regression counterparts.

2. While five of the network metamodels met the

preliminary error tolerance at hidden node levels below 14,

each failed to converge to the established fitting error

tolerance of ±.05 in additional testing. When specified at

14 hidden nodes, all networks converged to the fitting

tolerance.

Thus, in accordance with previously established method-

ology and the above rationale, all networks are specified at

a 10-14-1 architecture prior to training.

4.1.2 Network Training. All networks were successfully

trained to within the selected error tolerance of ±.05; the

weight matrices derived during training are listed for each
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daily network metamodel in Appendix A. In all cases except

Attack Scenario Day 3, a learning rate of q=1.0 and

smoothing factor of A=.9 brought about convergence to the

desired error tolerance. A3 (henceforth, days are preceded

by A or N to indicate Scenario) converged only after

reinitializing training with a learning rate set at n=.5.

Table 4.1 lists training iteration counts and corresponding

elapsed training times for each neural network metamodel.

In this table, cumulative iterations are displayed under the

associated error tolerance level for each day, while the

last column lists the total elapsed clock time (in minutes)

required by each network to reach the final ±.05 error

tolerance level. Figure 4.2 graphically depicts the cumula-

tive iterations required to reach the error tolerances

listed in Table 4.1, for Attack and No-Attack Scenarios,

respectively.

In general, Attack Scenario network training iterations

seem largest at the ±.05 tolerance level (see the .05 boxes

in Figure 4.2) in comparison to the No-Attack Scenario,

which appears to be concentrated at both .06 and .05

tolerance levels. Further, the general level of effort

required to achieve network error tolerances seems more

homogeneous across days for No-Attack nets: the mean and

standard deviation of training iterations are 4,379 and

2,995.91 for the Attack metamodels, and 2,550.5 and 1,070.84

for their No-Attack counterparts. While clearly interpre-
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tive, the fact that Attack Scenario day training sets

exhibit more variation in response values than No-Attack

samples appears to be evidenced by the larger variance in

iterations required for Attack metamodel convergence.

Table 4.1

Training Iterations and Elapsed Clock Time

Day Training Error Tolerance Levels Minutes to
and Associated Cumulative .05 Error

Iterations Tolerance

.0 .08 .06 .05

Al 704 938 1315 1886 62.87

A2 477 728 1207 7991 266.37

A3 1356 2306 3809 5388 179.60

A4 787 861 1299 1390 46.33

AS 490 711 1493 2046 68.20

A6 476 907 1729 7576 252.53

N1 666 1067 2816 3872 129.07

N2 519 814 1375 2848 94.93

N3 326 441 678 753 25.10

N4 608 1099 1711 2624 87.47

N5 515 825 1334 2030 67.67

N6 359 473 2766 3176 105.87
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4.1.3 Overtraining. A general concern during

backpropagation network training is overtraining--networks

may fit the training set too closely to allow for adequate

prediction. Hecht-Nielsen notes:

An unexpected and peculiar phenomenon found in
some feature-based mapping networks (notably, backprop-
agation) is the problem of overtraining .... The source
of the problem seems to be a tendency of some networks
to start out by implementing a very "flat" approxi-
mating function....

As training of one of these peculiar mapping
networks progresses, it seems to be the case that the
initially flat surface defined by the functional form
of the network begins to "crinkle" and develop undula-
tions -- as it must if it is to better fit the training
set examples. However, as this process continues, if
the set of training examples are [sic) shown repeatedly
to the network many, many times, then the surface
becomes even more crinkled and convoluted in its at-
tempt to fit this fixed set of points. In behavioral
terms, all it "cares about" is fitting these points.
The ability to interpolate well between them is unim-
portant. (1990: 116-117)

Clearly, error tolerance settings determine goodness-

of-fit for the networks in this study--they essentially

specify the degree of "closeness" the network metamodel

computed response values must come to actuals comprising the

training sets. Interpreting Hecht-Nielsen's observation in

terms of error tolerances, it appears that the smaller the

tolerance, the greater the possibility that network may

predict poorly, ceritus paribus, as more and more training

iterations are required to minimize the error between

(network) computed and actual values. Thus, there is no

guarantee that the error displayed in forecasting unseen

cases will be similar in magnitude to that derived during
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training, although, given sufficiently large and

representative training and testing sets, this would be

expected. As a first examination of how well the networks

predict the testing sets in comparison to how they fit the

training sets, we turn to an examination of correlation for

both fitted and forecasted values.

4.2 Metamodel Correlations

Table 4.2 presents Spearman's Correlation Coefficients

for each network and regression metamodel for both fitting

(training) and forecasting (prediction) testing, while

Figure 4.3 plots same. Note that the statistics and

graphics are provided for networks trained to the final

error tolerance of ±.05, and than the graphs are broken into

separate Attack and No-Attack Scenarios. The correlations

tabulated and plotted measure the closeness between actual

and fitted estimates of training (fitting) set values in the

case of model fits, and the closeness of actual and forecast

testing set values in the case of model forecasts. Through-

out this chapter, when the terms fit and forecast are used,

they retain these connotations.

4.2.1 Fit and Forecast Correlations. As would be

expected, the non-linear networks exhibit consistently

larger positive correlations that the linear regression

metamodels with respect to model fitting, as reflected in

the first graph of Figure 4.3. With respect to forecasting,

the trend is notably reversed--network correlations show
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significant degradation with respect to the prediction of

unseen cases, particularly for Attack Scenario networks.

Table 4.2

Fit and Forecast Rank Correlation Coefficients

Day Reg Net Reg Net Reg Net
Fit Fit Forecast Forecast a-Level a-Level

Al .7017 .9117 .4808 .5600 .0250 .0100

A2 .7281 .9407 .6614 .5489 .0025 .0050

A3 .5027 .8907 .4030 .2526 .0500 .2500

A4 .5480 .9228 .2442 .3474 .2500 .1000

A5 .4309 .8986 .2640 -.3678 .2500 ----

A6 .5487 .8312 .2716 -.3236 .2500

N1 .5308 .9205 -.0638 .1464 ----

N2 .8062 .8887 .3214 .2401 .1000 .2500

N3 .7450 .9355 .3124 .3352 .1000 .1000

N4 .6867 .9203 .0904 -.0565 ----

N5 .7549 .8621 .5535 .4910 .0100 .0250

N6 .8590 .9127 .2503 .2321 .2500 .2500
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In the majority of cases, regression metamodels exhibit

higher positive forecast correlations than their network

counterparts. The two rightmost columns of Table 4.2 show

alpha significance levels for the forecast correlations of

both modeling methods; the superiority of the regression

metamodels over the networks is amplified by the a signifi-

cance levels (one-tailed test, r$>O) listed, although

neither metamodel type exhibits significantly high correla-

tions across all days within either Scenario. The excep-

tions to regression forecast correlation superiority are

days Al, A4, N1, and N3, where the network metamodels fare

better.

The network metamodels for days A5, A6 and N4 exhibit

negative forecast correlations, indicating an inverse

relationship (with respect to direction) between actual and

forecast values; in each of these cases, the correlations

are not statistically significant. The regression metamodel

forecast correlations for days A5 and A6 are somewhat

better; for days N1 and N4, however, neither metamodeling

method yields a significant a level. In general, correla-

tions are statistically significant for regression forecasts

(with the exceptions of day N1 and N4); networks fare poorly

in this regard, with no significant correlations occurring

for days A5, A6, N1, and N4 (1/3 of the total network

metamodel set).
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A particularly interesting phenomenon is noted in

Figure 4.3 for No-Attack Scenario forecasts--network meta-

models appear very similar, in day to day correlational

trend levels, to their regression counterparts. While less

significant in terms of a level than regression, the trends

in this figure suggest that network metamodels closely

approach the correlational values exhibited by regression in

the No-Attack Scenario, but fare poorly for Attack days

(notably A5 and A6). A plausible explanation for this

phenomena is that the networks have more difficulty in

predicting Attack Scenario response values due to response

variability inherent in Attack training and testing samples.

Regression metamodels, on the other hand, appear more robust

in dealing with response variation.

4.2.2 Forecast Correlations and TraininQ Iterations.

Forecast correlations and training iterations are compared

in Figure 4.4. In general, the number of iterations re-

quired for convergence to ±.05 tolerance during training

appears quite dissimilar for corresponding days between

Scenarios, and no convincing pattern appears for successive

days within Scenarios. Further, no pronounced relationship

between forecasting correlation and number of iterations

required during training is indicated, although for 4 of the

12 metamodels, correlations are relatively high at low

training iteration levels.
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As noted, little if any indication of trend in

iteration levels between successive days within a given

Scenario seems present. While the presence of one would

not, by necessity, imply network metamodel recognition of

autocorrelation, it is plausible that modeling correlations

across days (see 1.3.3 and 2.2.4) could be beneficial, in

that more information would be provided the networks. Here,

it appears that a given daily network metamodel knows

nothing of its predecessor or successor, which is consistent

with the cross-sectional metamodeling approach adopted from

the outset of the study. While clustering of relatively

high forecast rs values at lower training iteration levels

has been noted, there is no way to examine an overtraining

hypothesis that relatively high r. values generally occur at

lower iteration levels without a basis of comparison. A

possible means of exploring this possibility--comparing the

strength of forecast correlations of daily metamodels

trained to successive error tolerance levels--is presented

next.
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4.2.3 Forecast Correlations and Error Tolerance Levels.

Spearman's Rank Correlation Coefficient is used to measure

strength of association only--it is not a direct measure of

forecasting accuracy. It does, however, provide an indica-

tion of the degree to which forecast values follow a linear

direction or association with actuals comprising each

independent test set. Figure 4.5 plots Spearman's rs for

forecast versus actual test set values for each day at .10,

.08, .06 and .05 error tolerance levels, for each Scenario

(networks saved at each tolerance level are used to generate

their respective plot lines).

For both Scenarios, about 1/2 of the models reach their

highest forecast correlation level (rs) with networks
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trained to the .05 error tolerance level. While beyond the

scope of this work, a study of correlations and predictive

accuracy exhibited by networks trained at various error

tolerance levels could test whether models fitted at higher

tolerances provide better forecasts than those fitted at

lower ones. Figure 4.5 indicates this with respect to

forecast correlations, for this study.
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4.2.4 Summary. In this section, the topics of model

architecture, training times, and metamodel fit/forecast

correlations (with simulated actuals) were discussed.

Network metamodels are found superior in fitting but

inferior in forecasting in comparison with their regression

counterparts. Further, 4 of 12 network metamodels did not

possess statistically significant r, correlations; only two

regression metamodels failed to be statistically signifi-

cant. No network metamodel attained a forecast correlation

higher than .56; regression correlations were generally

higher, the highest being .66 for day A2.

There is indirect evidence to suggest that networks

trained at higher error tolerances may fare better in
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prediction than those fitted at lower ones. Networks also

appear to approximate their regression counterparts (in

forecast correlation level) more closely for the No-Attack

than the Attack Scenario, which is partially attributable to

the networks' seemingly less than optimal ability to account

for response variation.

4.3 Forecast Error

This section presents measures of forecast bias,

relative and comparative accuracy, dispersion, and other

statistics, for both metamodel types. In practical terms,

neither technique (regression and network) exhibits forecast

error levels sufficiently low for real-world applications.

In the following analysis, the chief points of interest

center upon discovering the conditions in which the

behavior of the metamodeling types is similar or dissimilar.

4.3.1 Forecast Bias and Relative Accuracy. Table 4.3

lists forecast bias and relative error measures; the three

principal statistics of interest in the table are plotted in

Figure 4.6, which presents forecast Mean Error (ME), Mean

Absolute Error (MAE), and Root Mean Squared Error (RMSE), in

turn.

Both regression and network metamodels generally agree

in sign (±) for ME (systemic bias); they disagree only for

day A6. Also, both metamodel types are similar in trend (of

magnitude) across days within Scenario, especially for No-

Attack Scenario days. Networks metamodels exhibit smaller
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MEs for days A2, A6 and N3, while regression metamodels fare

better for the remainder.

The reader is reminded to view Mean Error primarily in

terms of bias; typical forecast error is measured more

accurately by Mean Absolute Error (MAE), and by Root Mean

Squared Error (RMSE). For both MAE and RMSE, Figure 4.6

indicates the same pattern in metamodel error for the No-

Attack Scenario as that exhibited in the ME plot. The sole

case of network superiority here (MAE/RMSE) is the MAE for

day N3. For the No-Attack Scenario, however, the

differences in MAE and RMSE between model types are much

smaller than those observed for the Attack Scenario.

4.3.2 Forecast Error RanQe and Comparative Accuracy.

Range statistics and the Adjusted Mean Absolute Percentage

Errors (AMAPEs) are tabulated for each daily metamodel in

Table 4.4. Figure 4.7 plots forecast error ranges for

Regression and Network metamodels, respectively. In these

plots, tick marks specify the Standard Deviation of Error

(SDE) and the minimum absolute error for each metamodeling

type's forecasts. Figure 4.8 plots the comparative AMAPEs;

as a percentage error measure, AMAPEs allow comparisons of

accuracy across days.
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Table 4.3

Forecast Errors--Relative Measures

Day Reg SSE MSE ME MAE RMSE
or
Net

Al R 4,431.0682 221.5534 -1.546 10.967 14.885

Al N 6,448.7772 322.4389 -3.704 13.590 17.957

A2 R 20,696.9709 1,034.8485 -7.406 26.445 32.169

A2 N 39,187.2889 1,959.3644 -1.991 37.673 44.265

A3 R 31,247.6316 1,562.3816 -7.891 28.714 39.527

A3 N 53,559.8143 2,677.9907 -11.721 39.425 51.749

A4 R 16,380.7183 819.0359 20.231 23.657 28.619

A4 N 33,735.0478 1,686.7524 26.855 32.369 41.070

A5 R 20,641.3357 1,032.0668 5.477 25.532 32.126

A5 N 57,081.4717 2,854.0736 7.211 45.004 53.424

A6 R 19,917.5500 995.8775 7.645 25.675 31.557

A6 N 38,537.2262 1,926.8613 -1.051 33.794 43.896

N1 R 2,729.9200 136.4960 -9.880 10.220 11.987

N1 N 4,019.2110 200.9606 -11.555 12.362 14.176

N2 R 4,870.7900 243.5395 2.905 12.125 15.606

N2 N 7,533.5897 376.6795 3.978 15.838 19.408

N3 R 3,380.6000 169.0300 2.240 10.850 13.001

N3 N 3,723.7669 186.1883 1.435 10.030 13.645

N4 R 17,352.4100 867.6205 -15.115 22.735 29.455

N4 N 23,032.8414 1,151.6421 -19.576 25.787 33.936

N5 R 2,869.3100 143.4655 -0.055 7.725 11.978

N5 N 4,534.7438 226.7372 -0.227 11.098 15.058

N6 R 8,095.3400 404.7670 -6.940 15.760 20.119

N6 N 8,756.4457 437.8223 -8.342 16.976 20.924
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Table 4.4

Forecast Errors--Ran e and Comparative Accuracy Measures

Day Reg Low High Abs Min SDE AMAPE
or Error Error Error
Net

Al R -28.00 34.500 1.031 15.271 11.460

Al N -41.860 29.100 0.411 18.423 14.173

A2 R -68.300 71.750 0.656 33.005 63.573

A2 N -76.600 96.977 5.115 45.415 79.420

A3 R -72.875 114.25 2.400 40.554 30.754

A3 N -134.750 66.836 0.557 53.094 39.264

A4 R -21.400 50.563 0.813 29.362 24.931

A4 N -19.070 95.495 2.200 42.137 39.900

A5 R -68.400 71.336 0.300 32.960 25.129

A5 N -66.300 109.710 6.270 54.811 43.195

A6 R -53.800 68.400 0.400 32.377 15.727

A6 N -86.740 118.219 0.090 45.036 21.046

N1 R -18.100 3.200 0.200 11.987 3.945

N1 N -25.740 3.990 1.410 14.544 4.731

N2 R -22.800 30.700 0.100 16.012 5.587

N2 N -27.430 40.800 0.970 19.912 7.440

N3 R -17.600 23.300 0.900 13.339 5.143

N3 N -35.650 33.200 0.050 14.000 4.696

N4 R -74.700 18.900 2.200 30.221 12.196

N4 N -72.320 22.270 0.190 34.817 13.550

N5 R -36.600 26.000 0.100 12.289 3.918

N5 N -35.720 26.590 0.110 15.449 5.760

N6 R -40.200 24.600 1.600 20.642 8.494

N6 N -40.500 22.230 2.410 21.468 9.263
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In general, regression metamodels exhibit much smaller

error ranges in comparison to their network counterparts,

and their Standard Deviations of Error (SDEs) are both

smaller and more consistent from day to day. With respect

to AMAPE, regression metamodels exhibit lower AMAPEs in all

cases except day N3, indicating superior forecasting perfor-

mance over the network metamodels.

Of particular interest is the similarity of pattern

between regression and network metamodeling RMSEs and AMAPEs

as illustrated in Figures 4.5 and 4.7. Network metamodel

error trends parallel those of regression, albeit at

generally higher levels; this is especially true for AMAPE.

The difference between methods is relatively small for No-
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Attack Scenario Days, although similarity in trend for the

Attack Scenario is clear. As in the results for forecast

correlations (see 4.2.1), the implication is that the

network metamodels appear to be approximating the

performance of their regression counterparts. To repeat:

the magnitude of network error for Attack days appears to be

attributable to the network's seeming inability to deal with

a high degree of response variation.

4.3.3 Summary. In this Section, the topics of forecast

bias, relative and comparative accuracy, error range and

dispersion, and error trend were discussed. Both meta-

modeling techniques generally agree with respect to bias

(ME), and with the exception of the MAE for day N3,

regression metamodels were consistently better in terms of

relative accuracy (MAE and RMSE). Further, error ranges and

SDEs were consistently smaller for regression, as were

AMAPEs, again with the exception of day N3.

Neither model predicted test set data sufficiently well

to be considered for real-world implementation. What is

interesting is the degree to which network metamodels

parallel the performance of their regression counterparts,

albeit at higher error levels. In particular, networks

closely approximate regression performance for No-Attack

Scenario days; their relatively poor performance in modeling

Attack days appears to be a function of inherent difficulty

in dealing with response variation.
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4.4 Statistical Significance

In this section, the differences between forecast and

actual values are examined for statistical significance, for

each metamodeling type. As a necessary prerequisite to the

application of a paired difference experiment, the samples

of differences (between each method and actuals) is examined

for approximate normality via the Wilk-Shapiro (W-S) test.

The results of the W-S test are listed in Table 4.5; all

difference samples appear relatively normally distributed.

Tables 4.6 and 4.7 list t and p-values for the paired

difference experiment, while Figures 4.8 and 4.9 plot same,

respectively. The hypothesis under investigation is whether

or not forecast values are significantly different from

sample actuals, in accordance with the following test

specification:

HO: (A1 - A2) = Do

Ha: (A1 - 2) Do

Test Statistic: t = X -D o

s / N 1/2

Rejection Region: t < -t,/ 2 or t > t,/2

where

t,/, has (n D - 1) df (degrees of freedom).

For the testing sample size of n=20, the critical t value at

the a=.05 is 1.729 (McClave and Benson, 1988:1197).
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Table 4.5

Wilk-Shapiro Tests

Day Act-Reg Act-Net

Al 0.8878 0.9248

A2 0.9468 0.8643

A3 0.8809 0.8493

A4 0.9696 0.9554

A5 0.9431 0.9279

A6 0.9736 0.9046

Ni 0.9628 0.9140

N2 0.9698 0.8849

N3 0.9654 0.9488

N4 0.9365 0.8726

N5 0.8686 0.9256

N6 0.9647 0.9540

The computed t-values listed in Table 4.6 and plotted

in Figure 4.9 indicate that both methods' forecasts for days

A4, Ni, N4 and N6 are significantly different than sample

actuals; these results are amplified by the small p-values

exhibited in Table 4.7 and plotted in Figure 4.10.
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Table 4.6

t-Test t-values for Actual vs Forecast Values

Regression Network

Day Mean StdErr t Mean StdErr t

Al -1.546 3.3960 -0.460 -3.7040 4.0310 -0.920

A2 -7.406 7.1820 -1.030 -1.9910 10.1400 -0.200

A3 -7.891 8.8860 -0.890 -11.7200 11.5600 -1.010

A4 20.230 4.6440 4.360 26.8500 7.1290 3.770

A5 14.430 5.8280 2.480 7.2110 12.1400 0.590

A6 7.645 7.0240 1.090 -1.0510 10.0700 -0.100

N1 -9.880 1.4310 -6.910 -11.5500 1.8840 -6.130

N2 2.905 3.5180 0.830 3.9780 4.3580 0.910

N3 2.240 2.9380 0.760 1.4340 3.1130 0.460

N4 -15.120 5.8000 -2.610 -19.5800 6.3600 -3.080

N5 -0.0550 2.7480 -0.020 -0.2270 3.4540 -0.070

N6 -6.940 4.3320 -1.600 -8.3410 4.4020 -1.890

6

4

2 -
Q)

0-

-2-

-4

-6-
-8

Al A3 A5 NI N3 N5
A2 A4 A6 N2 N4 N6

Day

Reg Forecast EMNet Forecast

Figure 4.9 Paired Difference t-Values
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Table 4.7

p-values for Actual vs Forecast Values

Reg Net

Day -value p-value

Al .6452 .3697

A2 .3154 .8465

A3 .3856 .3235

A4 .0003 .0013

A5 .0228 .5597

A6 .2900 .9179

NI .0000 .0000

N2 .4191 .3728

N3 .4552 .6502

N4 .0174 .0062

N5 .9842 .9483

FN 6 .1257 .0734

0.9-
0.8-V
0.7-

0.1-

A2 A4 A6 N2 N4 N6

Day

Reg Forecast MNet Forecast

Figure 4.10 Paired Difference p-Values
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3. There appears to be circumstantial evidence to

substantiate the hypothesis that networks trained to a lower

tolerance level (or, equivalently, to a larger number of

training iterations) do less well in forecasting. Networks

requiring fewer training iterations appear to possess larger

positive forecast correlations and smaller forecast errors,

in some cases. With respect to statistically significant

differences, no clear pattern emerges in relation to the two

other principal analysis factors. Within this context, the

reader is cautioned to accept the evidence of overtraining

provisionally; many networks require thousands of training

iterations, and further analysis is required to determine

the extent to which networks can forecast the test sets used

herein more accurately when trained to lower tolerance

levels.

4. In terms of practical significance, neither meta-

model set provides sufficiently acceptable forecasts to be

considered for real-world implementation. Additional

research is required for both modeling techniques, although

this study provides sufficient insight into their behavior

to be useful for further research. Accordingly, a

discussion of precisely how the research performed in this

study answers and supports the research objectives stated in

1.5, together with issues pinpointed for future research,

jointly comprise Chapter 5, the next and final chapter of

this study.
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V. Conclusions and Recommendations

5.1 Conclusions

5.1.1 Prediction. This research assessed the

predictive capability of twelve backpropagation neural

network metamodels via a baseline of an equal number of

fully specified regression metamodels. In general, the

networks did not approach the accuracy in prediction

exhibited by their regression counterparts. While the

result for this research objective is clearly negative, the

overall performance and behavior exhibited by the networks

is far from trivial: networks closely approximated the

behavior of the regression equations for most days under

study, particularly for days possessing well-behaved

response variation.

By standards of common neural network research

practice, the constraints placed upon the networks were

severe. While imposed intentionally, the results suggest

that additional representation of variance is needed for

improving overall network forecasting accuracy. Neither the

networks nor the regression metamodels contained a term for

blocking, which appears important for adequately modeling

TSAR/TSARINA (simulated) samples regardless of metamodeling

method. To this end, the networks appear to suffer (con-

siderably) from a lack of adequate problem representation.
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Further, in mainstream neural network research, many

samples are often used in developing an application. In

this study, only training and validation samples were

employed, in the effort to "freeze" the results and analyze

network performance characteristics for a preliminary

research assessment. Hecht-Nielsen recommends using three

independent samples: a training set (used here), a training

test set (not used here), and an independent test set (also

used here) for training backpropagation neural networks

(1990:115-119). The training test set is used in conjunc-

tion with the training set to fit the network in question,

while the latter consists of unseen cases used for evaluat-

ing a network only after training is completed. In this

way, the researcher ensures that the networks are familiar

with a relatively large set of cases, and that the network

is adequately generalizing (predicting) from the training set.

A clear implication is that samples used for network

training must truly sample important observations--while the

neural network literature seems abundant with warnings

regarding the necessity for employing large samples for

adequate representation, the real issue seems more analogous

to that of importance sampling used in traditional simula-

tion modeling and analysis. In essence, it appears to be a

quality over quantity issue, although networks indeed seem

to require considerably more data than traditional modeling

techniques.
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5.1.2 Fitting versus Prediction. With respect to model

fitting, networks were superior to the regression metamodels

in every case; so much so, they appeared incapable of

generalizing (predicting) beyond the training set (as

evidenced by small positive and even negative correlations

between forecasts and test set actuals). While circum-

stantial evidence exists to support the conclusion that some

networks developed in this study were overtrained, the more

probable rationale is that the networks were not constructed

in a manner that adequately models the large degree of

response variation present in the training and testing

samples. Hecht-Nielsen notes that in monitoring training

set and training test set Mean Squared Error (MSE)

simultaneously, one may find that the training test set

reaches its lowest MSE at a point where the training set MSE

is not at its minimum (1990:117). In this way, the

researcher ensures that backpropagation networks more

optimally predict unseen cases by measuring the interaction

of training and training test sets--in essence, the

researcher empirically distinguishes goodness-of-fit from

goodness-of-forecast.

5.1.3 Neural Network Properties. For the neural net-

works developed in this research, the problem with

generalization (predicting unseen cases) appears to be

primarily a function of architecture selection. While the

need for the representation of blocking has already been
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noted, the issue of superfluous hidden nodes also requires

comment: Sanger indicates that the addition of too many

hidden nodes renders some of the them superfluous (1989).

With respect to generalization, too many hidden units will

eventually cause the network to simply "memorize" the

training set (via overfitting) (California Scientific

Software Technical Support, 1991), with poor prediction a

likely consequence.

Conversely, when determining the minimum number of

hidden units required by the networks developed in this

research, it was discovered that using too few renders the

net incapable of converging to the desired error tolerance

during training. Further, a test of several networks

possessing minimal architectures (8 hidden nodes or less)

revealed that generalization capabilities were poorer than

the 10-14-1 networks reported in this study.

In addition, the networks were extremely sensitive to

changes in and the interaction of error tolerances, the

number of hidden nodes, and the learning rate, as noted

during the preliminary stages of this study. Although the

precise relationship between the number of hidden units and

learning rate settings is unclear, it appears there is a

trade-off between learning rate settings and the number of

hidden nodes contained in the network's architecture. While

the effect on generalization remains unclear, it does appear

an analysis of the generalization capabilities of networks
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possessing fewer hidden nodes and larger error tolerances

than those developed in this research is required.

5.1.4 Other. The clear superiority of networks in

fitting data suggests that they offer a powerful means of

approximating functions for known data, which is invaluable

in real-time and expert system environments requiring a

"look-up" capability (the conceptual leap from an expert

system to a binary-valued neural network is indeed a small

one). To this end, the difficulty the networks experienced

in predicting unknown values appears to be precisely the

same characteristic that makes them valuable in fitting

training samples.

5.2 Recommendations for Future Research

5.2.1 General. This study deals with an issue that is

relevant to the current efforts of ensuring efficient and

effective combat capability in the face of a constant

reduction in the budgetary resources for accomplishing same.

Diener's work (1989), from which this study takes its

genesis, is directly engaged in identifying those resources

most important for sustainability and readiness for an F-15

air base; this research focuses on predicting the number of

sorties that can be flown on a given day for a given level

of air base resources. Both studies attempt to engage these

questions at the systems level, in lieu of focusing upon a

single functional area, i.e., questions are asked of the

entire system, sacrificing sub-optimal precision for
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systems-level understanding. Due to the criticality of the

latter, especially when confronted by the reality of

continually decreasing budgetary resources for defense, it

is strongly recommended that the research efforts in both

studies be continued.

5.2.2 Recommendations for Future Research. The

prediction of sorties flown from a given level of air base

resources is a research topic with both interesting

theoretical implications and practical significance.

Accordingly, the research has strong merit for further

investigation. The following recommendations are made for

further study:

1. Network Architecture. Alternative backpropagation

topologies should be explored. Most notably, a means of

representing the blocking variables analogous to that

commonly used in regression metamodeling should be examined

first. Adequate modeling representation of response

variation was found to be important for network forecast

accuracy, particularly for Attack Scenario days.

In addition, other types of neural networks should be

investigated; see Tarr (1988) for a hybrid Kohonen-

Backpropagation neural network design that may provide addi-

tional modeling capability for the problem under study in

this research.

2. Time-Series Modeling. The exploration of creating

two larger models that incorporate all No-Attack and Attack
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Scenario Days as multivariate time series should be investi-

gated. It is recommended that a time series model

representing the 30 (daily) sorties flown responses be

explored, as this topology more closely models the simula-

tion experiment than the networks developed in this study,

and will provide additional information with respect to

correlated responses across days. Given a set of network

alternatives that model the same data from different

perspectives (i.e., longitudinally and cross-sectionally),

significance testing between prediction results may promote

more enlightened network problem representation.

3. Neural Network Weight Matrix Interpretation.

Methods for interpreting neural network weight matrices are

receiving much recent attention, due to the need for

assessing the importance of model variables. Most notably,

principal component analysis (Sanger, 1989, Hertz et al.,

1991:197-210), Chernov faces (Howell, 1991), and Garson's

method (Garson,1991) show promise for interpreting the

internal representations formed during network training and

for assessing the relative significance of model variables.

In the spirit of Diener's analysis (1989), these weight

interpretation methods should be explored in efforts to

assess relative independent variable importance.

4. Sample Size. The sample sizes collected for

modeling and testing should most likely be increased.

Neural networks are clearly data-driven models, and the
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predictive capabilities appear to be relatively poor unless

a relatively large number of (very) representative observa-

tions predominate the training sets employed. To this end,

the technique appears less robust than traditional

regression methods--for this research. The reader is

cautioned not to equate sample size with sample importance,

however--as noted previously, size appears less of an issue

than the relative importance of what is sampled, with

respect to problem representation.

5. Real-valued Data or Additional Factor Levels. As

a purely exploratory issue, resource factor indicator

variables could be replaced by real-valued scalars where

possible, to expand the modeling space and representation of

the problem to the networks. Where not practicable,

indicators could still be used. The result would be a

mixture of real-valued and symbolic data comprising the

input vector (resource policy), which is amenable to neural

network application, and may promote better network

generalization.

6. As an additional alternative, the simulation

experiment could be expanded to more factor levels to

accommodate values falling between "low" (0) and "high" (1)

(for example "low", "near-average", "average", "above-

average", "near-high", and "high" could possibly correspond

to a fractional factorial design with factors at 6 levels).

This approach, in effect, generates a "degree of membership"
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approach to factor value representation analogous to that

used in fuzzy-set data representations. The reader is

referred to Kosko (1992) for a detailed discussion of the

relationship between neural networks and fuzzy systems.

5.3 Epilogue

Simulation metamodels not only provide a unique oppor-

tunity for researchers attempting to focus deeply upon the

behavior of data, they also constitute a bridge between

highly trained researchers and practicing managers. In

modeling several alternative Scenarios, simulation allows us

to explore the effects and consequences of our actions and

choices in many different situations. In contrast, the

analytic modeling of physical systems essentially tells one

story--the current one. Via simulation analysis, together

with metamodeling, we may analyze and compare the systemic

behaviors of several logically possible states of affairs in

lieu of analyzing only a single actual state of affairs.

Much of this study was concerned with the exploration

of a new technique that offers promise in deriving an

analytical representation of a problem of sincere concern to

managers facing continual resource reductions. In light of

the practical significance of resource modeling analyses, we

strongly encourage the continuation of the exploratory

research presented here and in Diener (1989). The

interaction of both approaches to metamodeling is rich in

both theoretical and practical significance.
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